The antibacterial and antibiofilm role of cannabidiol against periodontopathogenic bacteria

pubmed logo

“Aims: Bacterial resistance and systemic risks associated with periodontitis underscore the need for novel antimicrobial agents. Cannabis sativa is a promising source of antimicrobial molecules, and cannabidiol (CBD) attracts significant interest. This study evaluated the antibacterial and antibiofilm activity of CBD against periodontopathogens, and assessed its toxicity in vivo model.

Methods and results: Antibacterial activity was determined by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). Biofilm inhibition was determined the Minimum Inhibitory Concentration of Biofilm (MICB50). Toxicity was assessed using Caeonorhabditis elegans. The periodontopathogens tested were Actinomyces naeslundii (ATCC 19039), Peptostreptococcus anaerobius (ATCC 27337), Veillonella parvula (ATCC 17745), Fusobacterium nucleatum (ATCC 10953) and Aggregatibacter actinomycetemcomitans (ATCC 43717). CBD exhibited antibacterial effects with MICs of 0.39 to 3.12 μg ml-1 and MICB50 of 0.39 μg ml-1 to 1.56 μg ml-1 against biofilms, without toxicity below 375 μg ml1.

Conclusion: The results suggest that CBD is a non-toxic product with antibacterial and antibiofilm potential, exhibiting promise as a therapeutic alternative for oral diseases.”

https://pubmed.ncbi.nlm.nih.gov/39737707/

https://academic.oup.com/jambio/advance-article-abstract/doi/10.1093/jambio/lxae316/7934962?redirectedFrom=fulltext&login=false

Genotoxicity study of Cannabis sativa L. extract

Toxicology Reports

“Cannabis sativa L., a member of the Cannabaceae family, has been thoroughly investigated for its diverse therapeutic properties, primarily attributed to cannabinoids such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Secondary, metabolites like terpenes also exhibit pharmacological effects.

This study examined the genotoxicity of a whole Cannabis sativa flower extract 160.32 mg/mL using three OECD-recommended protocols: the Ames test, micronucleus test, and comet assay. Five groups of six Wistar rats were used. Three doses of the extract (500, 1000, and 2000 mg/kgbw) or negative control (placebo) were administered orally, while cyclophosphamide monohydrate (20 mg/kgbw) was used as a positive control via intraperitoneal injection. Blood was collected for the comet test, and the animals were euthanized for bone marrow collection for the micronucleus test.

The Cannabis extract did not increase the number of revertant bacterial colonies at (375, 250, 125, and 62.5 μg/plate) in TA100 or TA98, nor did it affect the number of micronucleated polychromatic erythrocytes (MNPCEs) or the ratio of polychromatic to normochromatic erythrocytes (PCEs/NCEs). It also did not alter the index or frequency of DNA damage in hematopoietic cells.

These results suggest no genotoxic effects, supporting its potential therapeutic use.”

“Cannabis sativa extract shows no significant genotoxic effects in tested models.”

“Study supports therapeutic use of whole Cannabis sativa extract.”

https://www.sciencedirect.com/science/article/pii/S2214750024002476

https://www.forbes.com/sites/emilyearlenbaugh/2024/12/30/cannabis-study-finds-no-genotoxic-effects/