Cannabinoids in Chronic Pain Management: A Review of the History, Efficacy, Applications, and Risks

pubmed logo

“Background/Objectives: Chronic pain remains a pervasive and challenging public health issue, often resistant to conventional treatments such as opioids, which carry substantial risks of dependency and adverse effects. Cannabinoids, bioactive compounds derived from the Cannabis sativa plant and their synthetic analogs, have emerged as a potential alternative for pain management, leveraging their interaction with the endocannabinoid system to modulate pain and inflammation. 

Methods: The current, evolving literature regarding the history, efficacy, applications, and safety of cannabinoids in the treatment of chronic pain was reviewed and summarized to provide the most current review of cannabinoids. 

Results: Evidence suggests that cannabinoids provide moderate efficacy in managing neuropathic pain, fibromyalgia, cancer-related pain, and multiple sclerosis-related spasticity. Patient-reported outcomes further indicate widespread perceptions of cannabinoids as a safer alternative to opioids, with potential opioid-sparing effects. However, the quality of existing evidence is limited by small sample sizes and methodological inconsistencies. Regulatory barriers, including the classification of cannabis as a Schedule I substance in the United States, continue to hinder robust research and clinical integration. Moreover, the risks associated with cannabinoids, such as psychiatric effects, addiction potential, and drug interactions, necessitate cautious application. 

Conclusions: Cannabinoids represent a promising, albeit complex, alternative for chronic pain management, particularly given the limitations and risks of traditional therapies such as opioids. However, significant deficiencies remain in the research. While smaller trials and systematic reviews indicate therapeutic potential, the quality of evidence is often low due to limited sample sizes, short study durations, and methodological inconsistencies. Large-scale, randomized controlled trials with long-term follow-up are urgently needed to confirm efficacy and safety across diverse patient populations and pain etiologies.”

https://pubmed.ncbi.nlm.nih.gov/40149508/

“The future for cannabis research is bright, and as regulatory frameworks adapt to balance access and oversight, cannabinoids may transition from an experimental adjunct to a well-established option in chronic pain care, provided scientific rigor and evidence-based policymaking remain at the forefront.”

https://www.mdpi.com/2227-9059/13/3/530

Antiepileptic activity and potential mechanism of full-spectrum hemp extract

pubmed logo

“Epilepsy is the fourth most common neuropsychiatric disorder. Although the approval of Epidiolex has ignited hope for patients, there is still a large gap in the field of anti-seizure research. The effect and underlying mechanism of full-spectrum hemp extract (HE) remains unclear.

Here this study investigated the anti-seizure effect of HE on seizure models. The results showed that HE significantly reduced seizure susceptibility and prolonged seizure latency with better pharmacokinetic performance compared to CBD.

This article then further explored the anti-seizure active components and their possible mechanism in HE. The results indicated that cannabichromene (CBC) and cannabinol (CBN) were involved in the anti-seizure process, especially CBC showed a strong allosteric enhancement effects on CBD binding site of the GABAA receptor, which implied that the GABAA receptor seemed to be the primary anti-epileptic target of HE.

This article not only presents the great potential of HE as a candidate for new anti-epileptic drugs with less psychoactive, but also provides a valuable contribution to subsequent mechanism research and drug development on epilepsy.”

https://pubmed.ncbi.nlm.nih.gov/40166106/

https://www.sciencedirect.com/science/article/pii/S2667325824004552?via%3Dihub

Cannabidiol from Conventional to Advanced Nanomedicines for the Management of Cancer-Associated Pain

pubmed logo

“Chemotherapy-induced pain is one of the major challenges that hamper the patient’s quality of life. Several cases of insufficient pain management were reported globally, especially in the case of patients who do not respond well to conventional pain management regimes and opioid analgesics. Additionally, conventional pain management has several shortcomings, and evidence suggests that cannabidiol has the potential to overcome those shortcomings.

Cannabidiol (CBD) is a non-psychoactive compound of the Cannabis plant that shows an effective outcome in chemotherapy- induced pain as well as in cancer treatment, as it possesses anti-inflammatory and analgesic properties.

The mechanism of pain and its management by cannabidiol, with all possible evidence, is well summarised in the paper. This article concludes the types of pain experienced by cancer patients, the effectiveness of CBD in the management of pain, and challenges faced by patients after using Cannabidiol with various case studies.

Later, antitumor efficacy studies of CBD were disclosed, and its various types of formulations and nano-formulations were summarized in the paper. Overall, the paper establishes the role of cannabidiol in Chemotherapy-induced pain.”

https://pubmed.ncbi.nlm.nih.gov/40151084/

https://www.eurekaselect.com/article/147414

The protective role of cannabidiol in stress-induced liver injury: modulating oxidative stress and mitochondrial damage

pubmed logo

“Background: Stress-induced liver injury, resulting from acute or chronic stress, is associated with oxidative stress and inflammation. The endocannabinoid system, particularly cannabinoid receptor 2 (CB2R), plays a crucial role in liver damage. However, there are currently no clinical drugs targeting CB2R for liver diseases. Cannabidiol (CBD), a CB2R agonist, possesses anti-inflammatory and antioxidant properties. This study aims to investigate the pharmacological effects of CBD in a mouse model of stress-induced liver injury.

Methods: We employed a mouse model of stress-induced liver injury to evaluate the protective effects of CBD. Assessments included histopathological analysis, cytokine detection via ELISA, protein expression analysis using immunohistochemistry and Western blot, and gene transcription differential analysis. Transmission electron microscopy was utilized to observe mitochondrial morphology. Additionally, we examined the expression levels of CB2R, SLC7A11, α-SMA, and ACSL4 proteins to elucidate the mechanisms underlying CBD’s effects.

Results: CBD exhibited significant protective effects against stress-induced liver injury in mice. Decreases in liver function indicators (including Aspartate Aminotransferase (AST) and Alanine Aminotransferase (ALT)) and inflammatory cytokines (such as IL-1β and Tumor Necrosis Factor-alpha (TNF-α)) were observed. CBD enhanced CB2R expression and reduced α-SMA levels, mitigating liver fibrosis. It also decreased ACSL4 levels, increased SOD and GSH-Px activities, and upregulated SLC7A11 protein expression. Furthermore, CBD improved mitochondrial morphology, indicating a reduction in oxidative cell death.

Conclusion: CBD activates the CB2R/α-SMA pathway to modulate liver inflammation and fibrosis. Through the SLC7A11/ACSL4 signaling pathway, CBD alleviates oxidative stress in stress-induced liver injury, enhances mitochondrial morphology, and reduces liver damage. These findings provide a theoretical basis for the potential application of CBD in the prevention and treatment of stress-induced liver injury.”

https://pubmed.ncbi.nlm.nih.gov/40160456/

“The cold-water immersion restraint method effectively simulates a stress-induced liver injury model caused by conditions such as hunger, cold exposure, and the fear of death. CBD demonstrates protective effects against stress-induced liver injury, and its protective mechanism may be associated with the activation of CB2R and mitochondrial metabolism. Specifically, CBD appears to exert its anti-liver fibrosis and antioxidative effects by activating CB2R, inhibiting the expression of α-SMA and ACSL4 proteins, and enhancing the expression of SLC7A11 protein, thereby alleviating liver damage.”

https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1567210/full

Parthanatos and apoptosis: unraveling their roles in cancer cell death and therapy resistance

pubmed logo

“Cell death is a fundamental process that needs to be maintained to balance cellular functions and prevent disease. There are several cell death pathways; however, apoptosis and parthanatos are the most prominent and have important roles in cancer biology. As an extremely well-regulated process, apoptosis removes damaged or abnormal cells via caspase activation and mitochondrial involvement.

Unlike in the healthy cells, the loss of ability to induce apoptosis in cancer permits tumor cells to survive and multiply out of control and contribute to tumor progression and therapy resistance. On the contrary, parthanatos is a caspase-independent metabolic collapse driven by poly (ADP-ribose) polymerase 1 (PARP1) overactivation, translocation of apoptosis-inducing factor (AIF), and complete DNA damage. Several cancer models are involved with parthanatos. Deoxypodophyllotoxin (DPT) induces parthanatos in glioma cells by excessive ROS generation, PARP1 upregulation, and AIF nuclear translocation.

Like in acute myeloid leukemia (AML), the cannabinoid derivative WIN-55 triggers parthanatos, and the effects can be reversed by PARP inhibitors such as olaparib.

Developing cancer treatment strategies involving advanced cancer treatment strategies relies on the interplay between apoptosis and parthanatos. However, such apoptosis-based cancer therapies tend to develop resistance, so there is an urgent need to look into alternative pathways like parthanatos, which may not always trigger apoptosis.

In overcoming apoptosis resistance, there is evidence that combining apoptosis-inducing agents, such as BH3 mimetics, with PARP inhibitors synergistically enhances cell death.

Oxidative stress modulators have been found to promote the execution of parthanatic and apoptotic pathways and allow treatment. In this review, apoptosis and parthanatos are thoroughly compared at the molecular level, and their roles in cancer pathogenesis as related to cancer therapeutic potential are discussed.

We incorporate recent findings to demonstrate that not only can parthanatos be used to manage therapy resistance and enhance cancer treatment via the combination of parthanatos and apoptosis but also that immunity and bone deposition can feasibly be employed against long-circulating cancer stem cells to treat diverse forms of metastatic cancers.”

https://pubmed.ncbi.nlm.nih.gov/40166425/

“Cannabinoids induce cell death in leukaemic cells through Parthanatos and PARP-related metabolic disruptions.”

https://pubmed.ncbi.nlm.nih.gov/38461169/

Early oral administration of THC:CBD formulations prevent pain-related behaviors without exacerbating paclitaxel-induced changes in weight, locomotion, and anxiety in a rat model of chemotherapy-induced neuropathy

pubmed logo

“Rationale: Paclitaxel-induced neuropathy stands out as the primary, dose-limiting side effect of this extensively used chemotherapy agent. Prolonged hypersensitivity and pain represent the most severe clinical manifestations. Effective preventive and therapeutic strategies are currently lacking.

Objectives: Our study aimed to assess the impact of early oral administration of pharmaceutical-grade formulations containing the phytocannabinoids THC and CBD in a rat model of paclitaxel-induced neuropathy.

Methods: The experimental design involved the co-administration of paclitaxel and cannabinoid formulations with different THC to CBD ratios (THC:CBD 1:1 and THC:CBD 1:20) to adult male rats. Mechanical and thermal sensitivity, locomotor activity, vertical exploratory behaviors, anxiety-related parameters, weight gain, food and water consumption, and liver functionality were assessed.

Results: Daily administration of THC:CBD 1:1 successfully prevented paclitaxel-induced cold allodynia, while THC:CBD 1:20 effectively prevented both thermal and mechanical hypersensitivities. Additionally, THC:CBD 1:1 formulation restored rearing behavior, significantly reduced by paclitaxel. Conversely, neither cannabinoid formulation was able to counteract paclitaxel-induced hypo-locomotion, reduced vertical exploratory activity, increased anxiety-like behaviors, attenuated weight gain, or decreased food and water intakes. However, the formulations employed did not induce further alterations or toxicity in animals receiving paclitaxel, and no signs of liver damage were detected.

Conclusions: Our results suggest a differential therapeutic effect of two THC:CBD formulations on pain-related behaviors and spontaneous activities, particularly in the context of peripheral neuropathy. These formulations represent a promising therapeutic strategy not only to managing pain but also for enhancing daily activities and improving the quality of life for cancer patients.”

https://pubmed.ncbi.nlm.nih.gov/40163146/