“Monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH) degrade the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA), respectively… peripheral inhibition of enzymes hydrolyzing 2-AG and AEA suppresses capsaicin-evoked behavioral sensitization with distinct patterns of pharmacological specificity… Modulation of endocannabinoids in the periphery suppressed capsaicin-evoked nocifensive behavior and thermal hyperalgesia through either CB1 or CB2 receptor mechanisms but suppressed capsaicin-evoked mechanical allodynia through CB1 mechanisms only. Inhibition of endocannabinoid transport was more effective in suppressing capsaicin-induced sensitization compared to inhibition of either FAAH or MGL alone. These studies are the first to unveil the effects of pharmacologically increasing peripheral endocannabinoid levels on capsaicin-induced behavioral hypersensitivities. Our data suggest that 2-AG, the putative product of MGL inhibition, and AEA, the putative product of FAAH inhibition, differentially suppress capsaicin-induced nociception through peripheral cannabinoid mechanisms.”
“Cannabis has been used for centuries for its pain-relieving properties. The main active ingredient of cannabis, Δ9-tetrahydrocannabinol, produces antinociception by binding to G protein-coupled CB1 and CB2 receptors. Cannabinoids produce antinociception in animal models of both acute and chronic pain.”
Read more: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900457/