Motherhood and medicinal cannabis

pubmed logo

“Introduction: Women are emerging as a key demographic for medicinal cannabis (MC) use in countries that have implemented MC reforms. However, research on mothers’ experiences of consuming MC remains limited beyond studies on perinatal outcomes. This study explores mothers’ diverse experiences of consuming MC in New Zealand under the legal MC scheme.

Methods: Interviews with 15 mothers using MC via prescriptions, the illegal market or both in the last 12 months. Thematic analysis focused on MC use in parenting, MC conversations with children, societal stigma and risks.

Results: Mothers reported MC as an important facilitator of their ability to positively parent their children, enabling them to manage their own health needs (i.e., anxiety, endometriosis and arthritis). High costs of legal products hindered access to MC. Participants expressed unique risks that mothers face accessing the unregulated market for MC like being deemed a ‘bad mother’ and losing custody of children. Stigma was countered with narratives of empowerment through proactive MC conversations with children and agency by self-medicating with MC despite the judgement they may face for being a parent that uses cannabis.

Discussion and conclusions: Mothers felt managing their health with MC allowed them to be more present parents and better tolerate the stressors of motherhood. In-depth exploration of discussing MC with children and anticipating these conversations was a novel finding. Most mothers tried to destigmatise MC in conversations by classifying it in the same category as other medications and discussing its therapeutic benefits. Few were cautious about having these conversations too early.”

https://pubmed.ncbi.nlm.nih.gov/39967064/

“This study has provided insights into MC use among mothers, highlighting perceived therapeutic benefits for managing the unique stressors of motherhood and health and wellbeing in general. The findings illustrate the global legalisation of MC as a possible catalyst for shifting attitudes towards cannabis use in parenting, and a trend of women exercising agency in their health using complementary alternative therapies.”

https://onlinelibrary.wiley.com/doi/10.1111/dar.14027

Purified cannabidiol leads to improvement of severe treatment-resistant behavioral symptoms in children with autism spectrum disorder

pubmed logo

“Objective: The aim of our study was to evaluate the efficacy and safety of purified cannabidiol as an add-on medication in pediatric patients with autism spectrum disorder (ASD) associated with treatment resistant repetitive behaviors, behavior disorders, and intellectual disability and unresponsive to conventional medications and behavioral interventions.

Material and methods: A prospective, observational, before-and-after study was conducted including 20 patients with severe ASD who initiated treatment with purified CBD. Patients were evaluated using different scales at baseline and at three-month intervals during followup.

Results: The median total CBD dose was 363.5 mg (range, 100-700), and the median follow-up was 11 months (range, 6-12). As to the primary outcome evaluating symptoms reported by parents, improvement in at least one was observed after CBD initiation in 18 patients (90 %) and no improvement in two (10 %) (1 worsening, 1 no response). In the responders, 83.5 % (n = 76) of all reported symptoms improved. Regarding the secondary outcomes based on the assessment with different scales, improvement of around 30 % was found in irritability, social withdrawal, hyperactivity. Restricted and repetitive behavior improved in nine (50 %), while no changes were seen in seven (38.8 %). Sleep patterns were found to be slightly improved. Adverse effects were reported in 13 patients (65 %), mainly consisting of increased irritability and decreased appetite, but were mild or moderate and transient in all. In 40 % of the children, concomitant medication could be reduced or partially discontinued.

Conclusion: Our results suggest that treatment with purified CBD is effective and safe and could benefit patients with severe ASD by improving some of the core symptoms, including repetitive behaviors and social interaction, as well as associated comorbidities. The families considered the quality of life to have improved.”

https://pubmed.ncbi.nlm.nih.gov/39965749/

“Treatment with cannabidiol improved the quality of life of patients and their families.”

https://www.sciencedirect.com/science/article/abs/pii/S0091305725000188?via%3Dihub

Cannabidiol reshapes the gut microbiome to promote endurance exercise in mice

pubmed logo

“Cannabidiol (CBD), a nonpsychoactive compound from Cannabis, has various bioactive functions in humans and animals.

Evidence suggests that CBD promotes muscle injury recovery in athletes, but whether and how CBD improves endurance performance remains unclear.

Here we investigated the effects of CBD treatment on exercise performance in mice and assessed whether this effect involves the gut microbiome.

CBD administration significantly increased treadmill running performance in mice, accompanied by an increase in oxidative myofiber composition. CBD also increased mitochondrial biogenesis and the expression of associated genes such as PGC-1α, phosphorylated CREB and AMPK in muscle tissue. Interestingly, CBD altered the composition of the gut microbiome, and antibiotic treatment reduced the muscle endurance-enhancing effects of CBD and mitochondrial biogenesis.

We isolated Bifidobacterium animalis, a microbe increased by CBD administration, and named it KBP-1. Treatment with B. animalis KBP-1 in mice resulted in improved running performance. Whole-genome analysis revealed that B. animalis KBP-1 presented high expression of genes involved in branched-chain amino acid biosynthesis, expression of branched-chain amino acid release pumps and metabolism of lactic acid.

In summary, our study identified CBD and B. animalis KBP-1 as potential endurance exercise-promoting agents.”

https://pubmed.ncbi.nlm.nih.gov/39966566/

“In summary, we propose that both CBD and the gut bacteria B. animalis KBP-1, which is increased by CBD treatment, could be used in strategies to promote endurance exercise performance.”

https://www.nature.com/articles/s12276-025-01404-5

The role of cannabinoid-mediated signaling pathways and mechanisms in brain disorders

pubmed logo

“Cannabinoids play significant roles in the central nervous system (CNS), but cannabinoid-mediated physiopathological functions are not elaborated. Cannabinoid receptors (CBRs) mediate functions that include the regulation of neuroinflammation, oxidative stress, apoptosis, autophagy, and neurogenesis.

Microglia are the primary immune cells responsible for mediating neuroinflammation in the CNS. Therefore, this article primarily focuses on microglia to summarize the inflammatory pathways mediated by cannabinoids in the CNS, including nuclear factor-κB (NF-κB), NOD-like receptor protein 3 (NLRP3) inflammasome, mitogen-activated protein kinase (MAPK), protein kinase B (Akt), and cAMP-dependent protein kinase (PKA) signaling pathways. Additionally, we provide a table summarizing the role of cannabinoids in various brain diseases.

Medical use of cannabinoids has protective effects in preventing and treating brain diseases; however, excessive and repeated use can be detrimental to the CNS. We propose that cannabinoids hold significant potential for preventing and treating brain diseases, including ferroptosis, lactate metabolism, and mitophagy, providing new insights for further research on cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/39952540/

“Cannabis plants were historically used by pharmacologists as drugs to treat diseases in ancient India and China. Cannabinoids are natural compounds extracted from the cannabis plant. The most well-known component of cannabis is delta-9-tetrahydrocannabinol (delta9-THC)”

“This article reviews the role of cannabinoids in signaling pathways, including NF-κB, the NLRP3 inflammasome, MAPK, and AKT. Cannabinoids primarily combat neuroinflammation through CB2R-mediated signaling. Additionally, we discuss the effects of cannabinoids on oxidative stress, apoptosis, autophagy, and neurogenesis. Numerous studies demonstrate the neuroprotective effects of cannabinoids”

https://www.sciencedirect.com/science/article/abs/pii/S089865682500066X?via%3Dihub

The Endocannabinoid System as a Target for Ischemic Stroke Therapy

pubmed logo

“Introduction: Cannabinoids are increasingly being explored as a potential treatment for neurodegenerative diseases. This article aims to provide a narrative review of available data on the treatment of neurological disorders with cannabis constituents, focusing on ischemic stroke. 

Methods: Selected articles are summarized to describe design, results, limitations, conclusions, and implications about this theme. 

Results: The growing understanding of the endocannabinoid system and the cannabinoid receptors distribution in all human body systems and organs and particularly in brain structures importantly involved in myelination processes, suggests potential benefits for stroke symptoms and overall patient improvement. However, the variety of studied compounds, the different administration routes, dosages, and timing complicates data comparison, especially due to limited studies about these compounds, peculiarly in stroke patients. Thereat, this review to showcase disparities in findings and to summarize current advancements in cannabinoid use for potential future treatments. 

Conclusion: This article offers a review of the current literature in the field and discuss a pragmatic approach to the clinical use of cannabinoids in patients with ischemic stroke.”

https://pubmed.ncbi.nlm.nih.gov/39951358/

THC shows activity against cultured Plasmodium falciparum

pubmed logo

“The FDA approved drug Dronabinol was identified in a previous study applying virtual screening using the haemozoin crystal as a target against malaria parasites.

The active ingredient of dronabinol is synthetic tetrahydrocannabinol (THC), which is one of the major cannabinoids from Cannabis sativa.

Traditional use of cannabis for malaria fever was reported in the world’s oldest pharmacopoeia, dating to around 5000 years ago.

In this research we report that THC inhibits β-haematin (synthetic haemozoin) and malaria parasite growth.

Due the psychoactivity of THC, CBD, the other major naturally occurring cannabinoid that lacks the off-target psychoactive effects of THC, was also tested and inhibited β-haematin but showed only a mild antimalarial activity. To evaluate whether THC inhibit haemozoin formation, we performed a cellular haem fractionation assay that indicated that is not the likely mechanism of action.

For the first time, the cannabinoid chemical structure is raised as a new chemical class to be further studied for malaria treatment, aiming to overcome the undesirable psychoactive effects of THC and optimize the antimalarial effects.”

https://pubmed.ncbi.nlm.nih.gov/34763083/

https://www.sciencedirect.com/science/article/abs/pii/S0960894X21006697?via%3Dihub

Cannabidiol restores hematopoietic stem cell stemness in mouse through Atf2-Lrp6 axis after acute irradiation

pubmed logo

“Bone marrow serves as the residence of hematopoietic stem cells and is recognized as one of the most radiosensitive tissues. Exposure to acute radiation leads to severe damage to bone marrow hematopoiesis which can be fatal, while few clinically applicable medication or specific therapeutic targets have been discovered.

In this study, we found that the administration of cannabidiol significantly enhanced individual survival and restored the reconstitution capacity of bone marrow hematopoietic stem cells within 14 days after irradiation.

Single-cell RNA sequencing analysis demonstrated that the expression levels of genes associated with stemness along with Wnt and BMP signaling pathways were restored by the cannabidiol treatment through the upregulation of Atf2, a transcription factor possessing multifunctional properties. Atf2 upregulation induced by cannabidiol treatment potentially upregulated the expression of Lrp6 to improve the stemness of hematopoietic stem cells. Further functional experiments validated the crucial role of Atf2 in regulating multilineage differentiation potential of bone marrow hematopoietic stem and progenitor cells.

Overall, our findings provide evidence for a promising radioprotective function of cannabidiol and Atf2 as a candidate therapeutic target for acute radiation-induced hematopoietic injury, thereby paving the way for future research in the field.”

https://pubmed.ncbi.nlm.nih.gov/39949985/

“Cannabidiol (CBD) is the primary non-psychoactive chemical from Cannabis Sativa and an important component of hemp seed, a traditional Chinese medicine with a long history of application. Based on its multiple function, CBD has been investigated in fields of nervous system diseases, analgesic therapy, aging, anti-tumor therapy, and so on.2 In this study, we first assessed the potential role of CBD in preventing and treating acute irradiation-induced hematopoietic injury in bone marrow. Using single-cell RNA sequencing and functional assay, we dissected molecular alterations and potential mediator under CBD-treatment which led to the facilitated recovery of the HSC function. Collectively, this work strongly supports the therapeutic application of CBD in irradiation-induced bone marrow hematopoietic injury and highlights Atf2 as a promising therapeutic target herein.”

https://onlinelibrary.wiley.com/doi/10.1002/mco2.70092

Moroccan Cannabis sativa essential oil attenuates peripheral neuropathic pain induced by chronic sciatic nerve constriction injury in mice

pubmed logo

“Ethnopharmacological relevance: Cannabis sativa has been widely used in traditional medicine for its therapeutic properties. However, in Morocco, the ethnobotanical applications of Cannabis sativa, especially its essential oils, are underexplored. This study investigates, for the first time, the effects of Moroccan Cannabis sativa essential oil on peripheral neuropathic pain.

Materials and methods: Peripheral neuropathic pain was induced in mice through sciatic nerve injury. The mice were treated daily with cannabis essential oil for 21 days. Behavioral tests were conducted on days 1, 7, 14, and 21 to evaluate thermal, mechanical, and cold sensitivity. The essential oil’s chemical composition was analyzed using gas chromatography-mass spectrometry (GC/MS).

Results: The main constituents of the essential oil were (E)-caryophyllene (41.59%) and α-humulene (14%). Daily treatment with the essential oil significantly reduced pain sensitivity and improved functional and histological recovery over time. These effects are linked to the activity of the dominant terpenoids in the oil.

Conclusion: Moroccan Cannabis sativa essential oil shows significant therapeutic potential for managing peripheral neuropathic pain. By enhancing recovery and alleviating pain symptoms, it offers a promising alternative for treating chronic pain caused by nerve injuries.”

https://pubmed.ncbi.nlm.nih.gov/39947371/

“A multitude of recent studies have explored the broad biological properties of cannabis. Extracts from Cannabis sativa have demonstrated antimicrobial, anti-inflammatory, antinociceptive, and potent antioxidant activities.”

“This study examined the analgesic effects of terpenes found in Cannabis sativa essential oil on neuropathy. The results showed that chronic administration of these bioactive terpenes, specifically β-caryophyllene, α-humulene, and caryophyllene oxide, significantly increased pain sensitivity and response time in mice with neuropathy. Although morphine and THC-based treatments are commonly used to relieve neuropathic pain, these terpenes may offer a promising alternative with limited side effects. Clinical research has demonstrated the efficacy of cannabis-based treatments, leading several pain societies to recommend them for neuropathy management. “

https://www.sciencedirect.com/science/article/pii/S0378874125001692?via%3Dihub

The cannabinoid CB2 receptor mediates the analgesic effects of Cannabis sativa extract in a rat model of neuropathic pain

pubmed logo

“Neuropathic pain (NP) is a complex and debilitating condition that is often refractory to currently available analgesic medications.

Cannabis sativa extract (CSE) has been reported to exhibit analgesic properties across various pain models; however, the underlying mechanisms of action are not fully understood.

This study aimed to investigate the involvement of the cannabinoid CB2 receptor in mediating the analgesic effects of CSE in a rat model of NP, where NP was induced in male Wistar rats through chronic constriction injury (CCI) of the sciatic nerve.

Rats were randomly allocated into four groups: (1) Sham + vehicle, (2) CCI + vehicle, (3) CCI + CSE, and (4) CCI + CSE + AM630 (a CB2 receptor antagonist). CSE was administered intraperitoneally at a dosage of 30mg/kg once daily for 7 days, starting from day 7 to day 13 post-CCI surgery. To assess the involvement of the CB2 receptor, 7µg of AM630 was administered intrathecally to the rats in group 4, 30minutes before the CSE injections. Mechanical allodynia and thermal hyperalgesia were assessed using the von Frey filament and hot plate tests, respectively, at baseline (day 0) and on days 3, 7, 10, and 14 after surgery. Additionally, at the end of the study period (day 14), the expression level of Iba1 and GFAP genes was quantified in the lumbar enlargement tissues using real-time PCR.

The results demonstrated that CCI surgery induced mechanical allodynia and thermal hyperalgesia, along with the upregulation of Iba1 and GFAP genes in the vehicle-treated CCI group. Treatment with CSE significantly mitigated both allodynia and hyperalgesia and downregulated the expression of Iba1 and GFAP genes compared to the CCI + vehicle group. Furthermore, the administration of the CB2 receptor antagonist AM630 not only robustly blocked the antinociceptive effects of CSE but also reversed the significant downregulation of Iba1 and GFAP gene expression in the lumbar enlargement tissues.

These findings highlight the novel role of the CB2 receptor in mediating the analgesic effects of CSE, providing new insights into the potential therapeutic mechanisms of CSE in neuropathic pain management.”

https://pubmed.ncbi.nlm.nih.gov/39947333/

“In summary, this study provides evidence that CSE exerts analgesic and anti-inflammatory effects in NP through CB2 receptor activation. These findings contribute to the growing body of research supporting cannabinoids as potential therapeutic agents for NP management.”

https://www.sciencedirect.com/science/article/abs/pii/S0166432825000683?via%3Dihub

Efficacy of cannabidiol alone or in combination with Δ-9-tetrahydrocannabinol for the management of substance use disorders: An umbrella review of the evidence

pubmed logo

“Background and aims: Substance use disorders (SUD) lead to a high burden of disease, yet treatment options are limited. Cannabidiol (CBD) is being investigated as a potential therapeutic target due to its pharmacological properties and mode of action in the endocannabinoid system. Recent systematic reviews (SR) on CBD and SUDs have shown inconsistent results. The objective of this umbrella review was to determine whether CBD alone or in combination with Δ-9-tetrahydrocannabinol (THC) is effective for managing and treating SUDs.

Methods: Following a registered protocol, we searched PubMed, Web of Science and Epistemonikos databases for SRs, with or without a meta-analysis, of randomized controlled trials focusing on interventions dispensing CBD, alone or in combination with THC, to treat SUDs, published from 1 January 2000 to 15 October 2024. Screening, data extraction and quality assessment with the AMSTAR 2 tool were performed by two researchers in parallel and duplicated.

Results: 22 SRs were included, 5 of which performed a meta-analysis. We found mixed evidence regarding the efficacy of CBD to manage and treat SUDs. Findings were interpreted in light of the quality of the SRs. Nabiximols, which contains CBD and THC, demonstrated positive effects on cannabis withdrawal and craving symptoms. Evidence supporting the efficacy of CBD is limited and inconclusive for abstinence, reduction or cessation of use of cannabis, tobacco, alcohol, opiates and other psychoactive substances.

Conclusion: Cannabidiol (CBD) monotherapy does not appear to be efficacious for treatment of substance use disorders. CBD primarily exhibits effects on cannabis withdrawal and craving when combined with Δ-9-tetrahydrocannabinol (THC). Existing data on the efficacy of CBD alone with regard to other outcomes related to substance use disorders are limited.”

https://pubmed.ncbi.nlm.nih.gov/39947878/

“This umbrella review does not suggest any efficacy of CBD monotherapy as a therapeutic agent in SUDs. CBD primarily exhibits effects on cannabis withdrawal and craving symptoms when combined with THC in nabiximols. The CBD:THC 1:1 effects suggest that the potential benefits observed in cannabis withdrawal and craving may be because of THC, with CBD providing no additional benefit. We found no evidence for CBD alone, in the absence of THC, in managing cannabis and other SUDs. “

https://onlinelibrary.wiley.com/doi/10.1111/add.16745