Cannabis sativa L. Leaf Oil Displays Cardiovascular Protective Effects in Hypertensive Rats

pubmed logo

“Hemp (Cannabis sativa L.) leaf oil (HLO) contains several bioactive compounds such as phenolics, flavonoids, and quercetin. However, the effects of HLO on hypertensive conditions have not yet been investigated.

This study investigated the cardiovascular protective effects of HLO in a nitric oxide (NO) synthase inhibitor-induced hypertensive rat model.

Five weeks of HLO administration significantly prevented blood pressure elevation, improved cardiac function, and mitigated cardiac hypertrophy. Furthermore, HLO ameliorated vascular dysfunction by reducing sympathetic nerve stimulation-induced vasoconstriction, increasing endothelium-dependent vasorelaxation, as well as decreasing vascular wall thickness and vascular smooth muscle cell proliferation. HLO inhibited renin-angiotensin system (RAS) activation and downregulated angiotensin II type 1 (AT1) receptor and NADPH oxidase expression. Additionally, HLO normalized the circulating NO metabolites, decreased oxidative stress, and enhanced antioxidant status.

These findings suggest that HLO protects against cardiovascular dysfunction and preserves its morphology. The mechanism of action might involve the suppression of RAS overactivity and oxidative stress through the Ang II/AT1 receptor/NOX2 pathway in NO-deficient hypertension.”

https://pubmed.ncbi.nlm.nih.gov/40076524/

“In conclusion, HLO possesses a total phenolic content that demonstrates cardiovascular-protective effects against NOS inhibitor-induced hypertension. HLO exhibits an ACE inhibitory action and inhibits the Ang II/AT1 receptor/NOX2 pathway, alleviating cardiovascular hypertrophy and oxidative stress in a hypertensive rat model. Our findings suggest that HLO displays beneficial effects under a hypertensive condition.”

https://www.mdpi.com/1422-0067/26/5/1897

Low doses of cannabis extract ameliorate non-motor symptoms of Parkinson’s disease patients: a case series

pubmed logo

“Introduction: Parkinson’s disease (PD) is mainly characterized by motor symptoms including muscle rigidity, resting tremor and bradykinesia. However, the management of the non-motor symptoms represent a relevant clinical challenger in PD. These non-motor symptoms include cognitive and sleep disturbance and there is evidence that cannabinoids may represent alternative and effective treatments for non-motor symptoms of PD.

Methods: Therefore, this study addressed the effects of oral treatment with cannabis extract on cognition, insomnia, and daytime sleepiness in six patients with moderate PD. The patients were randomized to receive two different doses of a cannabis extract: THC:CBD 250:28 μg/day (n = 3) or 1000:112 μg/day (n = 3). The assessment of cannabis administration related to the cognitive field was measured by the Montreal Cognitive Assessment test (MoCA test), the insomnia was assessed by the Insomnia Severity Index (ISI), and daytime sleepiness was assessed using the Epworth sleepiness scale (ESS). All clinical evaluations were performed before treatment and at 15, 30, 60, and 90 days of treatment.

Results: The statistical analysis indicated a significant benefit of the cannabis extract treatment, at dose of 1000:112 μg/day after 60 days of treatment, on insomnia assessed by ISI. Moreover, the statistical analysis of data from ISI and MoCA tests showed a trend toward improvement over time, while no significant effect was observed in the ESS. There were no reports of significant adverse effects during the cannabis extract treatment.

Discussion: These results demonstrate benefits of short-time treatment (60 days) with low doses of cannabis extract on insomnia in PD patients. This study provide novel findings of the potential of combining CBD and THC as safe and effective treatments for non-motor symptoms of PD.”

https://pubmed.ncbi.nlm.nih.gov/40066073/

“In conclusion, these results demonstrate a possible benefit of short-time treatment (3 months) with low doses of cannabis extract on cognition and insomnia in PD patients. This study provide novel findings of the potential of combining CBD and THC as safe and effective treatments for non-motor symptoms of PD.”

https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2024.1466438/full

Beta-caryophyllene inhibits the permeability of the blood-brain barrier in MPTP-induced parkinsonism

pubmed logo

“Introduction: Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder worldwide. Although the precise pathogenesis of PD remains unclear, several studies demonstrate that oxidative stress, inflammation, low levels of antioxidants, and the presence of biomolecules that generate reactive oxygen species can disrupt the blood-brain barrier (BBB) as an essential feature of the disease.

Aims: This study aimed to test whether agonism to cannabinoid receptor type 2 (CB2) through the administration of β-caryophyllene (BCP) could correct BBB permeability in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) parkinsonism induction model.

Methods: We conducted a molecular assessment of proteins (immunochemistry and western blot), BBB permeability, and related biomarkers of PD (lipid peroxidation) in the MPTP mouse model of the disease.

Results: Expression of zonula occludens (ZO-1) and occludin tight junction (TJ) proteins was dampened in the striatum and substantia nigra pars compacta of mice, while lipid peroxidation and BBB permeability increased in the striatum in the MPTP-treated group, and these effects were reversed under BCP administration. This phytocannabinoid was able to restore protein expression and immunoreactivity of tyrosine hydroxylase (TH), ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP), as well as nuclear factor-erythroid 2-related factor (NRF2) translocation to the nucleus, and NADPH quinone oxidase 1 (NQO1) expression in mice treated with MPTP.

Conclusion: These results highlight the role of CB2 as a therapeutic target for PD, suggesting that its activation may ameliorate PD-related BBB disruption and oxidative stress, reducing the selective death of dopaminergic neurons.”

https://pubmed.ncbi.nlm.nih.gov/40054982/

“Beta-caryophyllene is a dietary cannabinoid.” https://www.ncbi.nlm.nih.gov/pubmed/18574142

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

Improved recognition memory and reduced inflammation following β-caryophyllene treatment in the Wistar-Kyoto rodent model of treatment-resistant depression

pubmed logo

“Persistent low mood, anxiety and cognitive deficits are common symptoms of depression and highly efficacious treatments that address symptoms including cognitive dysfunction are still required.

β-caryophyllene (BCP) is a terpene with anti-inflammatory and pro-cognitive properties; however, its efficacy on cognition in depression remains unclear.

This study aimed to investigate acute and chronic BCP treatment effects on cognitive, depressive- and anxiety-like behaviours, and inflammation in male and female Wistar-Kyoto (WKY) rats, a rodent model of treatment-resistant depression.

Rats were administered either BCP (50 mg/kg) or vehicle (control). Open field (OFT), social interaction, sucrose preference, novel object recognition (NOR) and elevated plus maze (EPM) tests were conducted after acute (1 h) and chronic (2 weeks) treatment. Peripheral plasma inflammatory cytokine levels were examined.

BCP acutely increased locomotor activity in the OFT but did not improve social interaction, whereas chronic BCP prevented increased latency to first interaction in females (not males). BCP did not improve sucrose preference or prevent anxiety-like behaviours in the EPM. BCP significantly increased novel object discrimination in the NOR test in male and female WKY rats and reduced cytokine levels after chronic treatment.

This study shows for the first time that chronic BCP treatment improved recognition memory and exerted anti-inflammatory properties in a rodent model of depressive-like behaviours. BCP did not significantly improve anxiety-like behaviours, social interaction or anhedonia in WKY rats of either sex.

These findings demonstrate the pro-cognitive effects of BCP in a rodent model of treatment-resistant depression worthy of further investigation.”

https://pubmed.ncbi.nlm.nih.gov/40049345/

https://www.sciencedirect.com/science/article/pii/S0278584625000661?via%3Dihub

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

Improvement in the Cognitive Function in Chronic Pain: Therapeutic Potential of the Endocannabinoid System

pubmed logo

“Chronic pain presents as a complex condition encompassing sensory (Zhang Z et al. Cell Rep 12;752-759, 2015) and emotional components, often accompanied by anxiety, depression, insomnia, and cognitive impairment. These factors significantly hinder daily activities and rehabilitation efforts.

The widespread prevalence of chronic pain imposes substantial clinical, societal, and economic burdens. While current analgesics have limitations and associated side effects such as tolerance, dependency, cognitive deficits, and a narrow therapeutic window, the search for new analgesic options remains imperative.

The endocannabinoid system (ECS), a key modulator in pain processing pathways, plays a crucial role in executive functions. This review specifically focuses on the cognitive impairments associated with chronic pain and highlights the pivotal role of the ECS in the cognitive aspects of pain. Additionally, the effectiveness of cannabinoid-based medications in improving executive functions in patients with chronic pain is evaluated.”

https://pubmed.ncbi.nlm.nih.gov/40059255/

https://link.springer.com/article/10.1007/s12035-025-04814-8

Spinal dorsal horn neurons involved in the alleviating effects of cannabinoid receptor agonists on neuropathic allodynia-like behaviors in rats

pubmed logo

“Mechanical allodynia, the pain caused by innocuous tactile stimuli, is a hallmark symptom of neuropathic pain that is often resistant to currently available treatments.

Cannabinoids are widely used for pain management; however, their therapeutic mechanisms for neuropathic mechanical allodynia remain unclear.

Using transgenic rats that enable to optogenetically stimulate touch-sensing Aβ fibers in the skin, we found that the intrathecal administration of the synthetic cannabinoid, WIN 55,212-2, alleviated the Aβ fiber-derived neuropathic allodynia. Furthermore, we injected adeno-associated virus vectors incorporating the rat cannabinoid receptor 1 (CB1 receptor) (encoded by Cnr1) promoter and tdTomato or short hairpin RNA targeting the CB1 receptor into the spinal dorsal horn (SDH) and demonstrated that the conditional knockdown of CB1 receptors in Cnr1+ SDH neurons attenuates the anti-allodynic effects of intrathecally administered WIN 55,212-2. Electrophysiological analysis revealed that Cnr1+ SDH neurons received excitatory synaptic inputs from the primary afferent Aβ fibers.

Collectively, our results suggest that the CB1 receptors in Cnr1+ SDH neurons are molecular and cellular targets of intrathecal WIN 55,212-2 to alleviate neuropathic allodynia.”

https://pubmed.ncbi.nlm.nih.gov/40058945/

https://linkinghub.elsevier.com/retrieve/pii/S1347861325000180

“WIN 55,212-2 is a chemical described as an aminoalkylindole derivative, which produces effects similar to those of cannabinoids such as tetrahydrocannabinol (THC) “

Ion channels and G protein-coupled receptors: Cannabidiol actions on disorders of excitability and synaptic excitatory-inhibitory ratio

pubmed logo

“Brain excitability is dysfunctional in epilepsy and overlapping neuropsychiatric conditions including autism spectrum disorder (ASD). Epilepsy and ASD are often attributed to malfunctioning coordination between synaptic excitation and inhibition.

Dravet syndrome (DS) is a severe form of epilepsy arising from haploinsufficiency of the SCN1A gene that encodes the voltage-gated sodium channel Nav1.1. A DS mouse model (Scn1a+/-) recapitulated essential features of DS and revealed that sodium current density was profoundly reduced in GABAergic inhibitory interneurons while pyramidal cells were spared, suggesting that DS is an “interneuronopathy.”

Further studies from the Catterall group and others have expanded this picture: DS symptoms, which include recurrent seizures, ataxia, cognitive impairment, ASD, and premature death, could be assigned in part to brain region-specific effects; the Nav1.1 mutations cause dysfunction in some subtypes of interneurons, not others, and are temporally restricted; DS-causing sodium channel mutations were found throughout SCN1A as well as in SCN1B, encoding the β1 subunit.

Interest in therapeutic approaches was sparked by preclinical studies of cannabidiol (CBD) that led to the 2018 US Food and Drug Administration approval for treatment of seizures in patients with DS. Independent evidence showed that CBD antagonized GPR55, a G protein-coupled receptor activated by the lipid signaling molecule lysophosphatidylinositol (LPI).

We summarized evidence from our group and others that CBD has a dual mechanism of action, targeting both ion channels and GPR55. CBD quells an epileptogenic vicious cycle: seizures strengthen LPI-GPR55 signaling while LPI-GPR55 signaling elevates the synaptic excitatory-inhibitory ratio, thereby promoting further seizures.

SIGNIFICANCE STATEMENT: Modern medicine relies on ion channels and G protein-coupled receptors (GPCRs) as key targets. In studies of Dravet syndrome, a devastating genetic disorder with features of epilepsy and autism, William Catterall connected NaV1.1 mutations to deficient excitability of inhibitory neurons. He and his colleagues explored preclinical interventions using cannabidiol (CBD) and clobazam, opening the way to a current understanding of CBD’s therapeutic mechanism. CBD affects both ion channels and GPR55, a GPCR activated by lysophosphatidylinositol, an activity-dependent lipid messenger, readjusting the synaptic excitatory-inhibitory ratio.”

https://pubmed.ncbi.nlm.nih.gov/40048808/

https://molpharm.aspetjournals.org/article/S0026-895X(25)00003-3/fulltext

A Green Microwave-Assisted Extraction of Cannabis sativa L. Extract and Its Cytotoxic Activity Against Cancer Cells

pubmed logo

“Objectives: This study aimed to explore the use of D-limonene and some vegetable oils with different amounts of saturated and unsaturated fatty acids as alternative green solvents for microwave-assisted extraction (MAE) of cannabis (Cannabis sativa L.). A standardized cannabis extract was selected to evaluate its potential as a chemopreventive agent.

Materials and methods: Alternative green solvents, powder-to-solvent ratios, and irradiation cycles were determined to optimize the MAE conditions. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to assess the cytotoxic effects against human breast cancer (MCF-7), liver cancer (HepG2), and mammary epithelium (hTert-HME1) cell lines.

Results: The extracts obtained from D-limonene and palm oil contained the highest concentrations of cannabidiol (CBD) and D-tetrahydrocannabinol (THC). A standardized D-limonene extract of cannabis (DEC) containing 0.03% w/w CBD and 1.37% w/w THC was selected for the evaluation of cytotoxic activity compared with CBD and THC. The results revealed that CBD and THC exhibited significant cytotoxic effects (p<0.05) against MCF-7 and HepG2, with the 50% inhibitory concentration (IC50) values of 18.5 and 12.37 μg/mL for CBD and 24.21 and 4.30 μg/mL for THC, respectively, whereas DEC exhibited moderate cytotoxicity against MCF-7 (IC50 of 488.85 μg/mL). However, CBD and THC exhibited significant cytotoxicity (p<0.05) against hTert-HME1 (IC50 values of 35.61 and 25.63 μg/mL, respectively), whereas DEC exhibited low cytotoxicity against hTert-HME1 (IC50 of 1.537.03 μg/mL).

Conclusion: DECs containing appropriate levels of THC and CBD have the potential to be candidates for cancer treatment. However, further investigations are required to improve the efficacy and safety profiles.”

https://pubmed.ncbi.nlm.nih.gov/40052396/

“The present study identified D-limonene and palm oil as promising alternative green solvents for extracting cannabinoids from cannabis inflorescences under MAE optimal conditions. The MAE method offers several advantages, including reduced time and energy consumption. In this study, DEC exhibited moderate cytotoxicity against MCF-7 cells with higher selectivity than CBD and THC. Therefore, DEC containing an appropriate amount of THC and CBD may exhibit a more satisfying anticancer effect and be a promising candidate for cancer treatment. However, additional research is required to understand the mechanisms of anticancer activity and to investigate additional efficacy and safety profiles.”

https://www.turkjps.org/articles/a-green-microwave-assisted-extraction-of-c-lessemgreatersativalessemgreater-l-extract-and-its-cytotoxic-activity-against-cancer-cells/doi/tjps.galenos.2025.33490

Case Report: White-Sutton syndrome and cannabidiol, an update on a reported patient with a successful response to off–label therapy

pubmed logo

“White-Sutton syndrome (WSS), associated with POGZ gene mutations, is a rare genetic disorder characterized by a spectrum of phenotypic features, including intellectual disabilities, developmental delays, and epilepsy. A case report described a female patient diagnosed with WSS who experienced seizures resistant to conventional antiseizure medications. Despite various therapeutic attempts, including valproate, topiramate, levetiracetam, clobazam, rufinamide, and vigabatrin, the patient’s seizures persisted.

After initiating an off-label treatment with cannabidiol (CBD), the patient achieved complete remission from seizures. Following significant clinical improvement, CBD therapy was discontinued by the parents against medical advice, leading to seizure recurrence. Upon reinstatement of CBD, the patient once again experienced successful seizure control.

This report emphasizes the need for further investigation into the off-label use of CBD, as an adjunctive therapy in pediatric individuals with drug-resistant epilepsy associated with WSS.

Although CBD shows promise in other epileptic syndromes, this case highlights its potential effectiveness in this specific condition. This manuscript aims to contribute to the understanding of WSS and advocate for further research into novel treatments, particularly the role of CBD in managing epilepsy within this complex clinical context.”

https://pubmed.ncbi.nlm.nih.gov/40051906/

“After numerous antiseizure medications (ASMs), an add-on off-label cannabidiol (CBD) therapy resulted in the patient being seizure-free. CBD, an exogenous compound derived from the cannabis plant devoid of psychoactive properties, has emerged as a prospective adjunctive therapy for refractory pediatric epilepsy and for developmental and epileptic encephalopathies (DEE).

Current evidence indicates that patients with a wide variety of epilepsy disorders and underlying causes may experience a positive response to treatment with a highly purified, plant-derived CBD oil solution, constituting this as a feasible off-label therapeutic alternative in many other rare pediatric epilepsies “

https://www.frontiersin.org/journals/pediatrics/articles/10.3389/fped.2025.1515304/full

Evaluation of cannabis-derived anti-inflammatory and analgesic treatment in animals and identification of cannabinoid-based effective inhibition of prostaglandin through computational studies

pubmed logo

“Many medical conditions are accompanied by severe pain. Acute pain refers to the experience of pain that lasts for only a few hours, whereas chronic pain is the ongoing emergence of pain signals over an extended period.

Since ancient times, cannabis has been utilized for medical purposes.

This article demonstrates the medicinal importance of cannabinoids through their analgesic and anti-inflammatory activities. Additionally, the mechanisms of cannabinoid-induced analgesia have been interpreted via preclinical investigations in animals. Cannabinoid extracts were formulated into gel and cream at concentrations of 2.5% and 5%.

The cannabis cream showed the highest analgesic activity at 5% compared to methyl salicylate as a control. Moreover, cannabis gel produced a comparable anti-inflammatory effect at 5% against the standard diclofenac sodium.

Molecular docking studies of all cannabinoids were performed to understand their modes of interaction and binding affinities with the cyclooxygenase II receptor. Additionally, molecular dynamics simulation studies were conducted for for both the ligand-free and cannabidiol-bound cyclooxygenase II to validate the in vivo and molecular docking results. During simulations, the stability of the protein was analyzed using root-mean-square deviation and root-mean-square fluctuation. The study of trajectories of the ligand-free and ligand-bound proteins was assessed using radius of gyration and solvent accessible surface area. Molecular mechanics/generalized Born surface area was used to evaluate the free energies of ligand binding. Dynamic cross-correlation matrix, principal component analysis and free energy landscape characterized the conformational changes and relative energies of them, which shows the existence of two metastable conformations in cyclooxygenase II, one of which is possibly the native state with catalytic activity.

In conclusion, the data from this study support the use of medicinal cannabis in the management of pain. To mitigate the suffering of patients experiencing extreme pain, the rational use of cannabis-based drugs merits significant consideration.”

https://pubmed.ncbi.nlm.nih.gov/40048308/

https://www.tandfonline.com/doi/full/10.1080/07391102.2025.2472180