“G protein-coupled receptors (GPCRs) adopt conformational states that activate or inhibit distinct signaling pathways, including those mediated by G proteins or β-arrestins. Biased signaling through GPCRs may offer a promising strategy to enhance therapeutic efficacy while reducing adverse effects.
Cannabinoid receptor 1 (CB1), a key GPCR in the endocannabinoid system, presents therapeutic potential for conditions such as pain, anxiety, cognitive impairment, psychiatric disorders, and metabolic diseases.
This review examines the structural conformations of CB1 coupling to different signaling pathways and explores the mechanisms underlying biased signaling, which are critical for the design of functionally selective ligands. We discuss the structure-function relationships of endogenous cannabinoids (eCBs), phytocannabinoids, and synthetic cannabinoid ligands with biased properties. Challenges such as the complexity of ligand bias screening, the limited availability of distinctly biased ligands, and the variability in receptor signaling profiles in vivo have hindered clinical progress.
Although the therapeutic potential of biased ligands in various clinical conditions remains in its infancy, retrospective identification of such molecules provides a strong foundation for further development. Recent advances in CB1 crystallography, particularly insights into its conformations with G proteins and β-arrestins, now offer a framework for structure-based drug design. While there is still a long way to go before biased CB1 ligands can be widely used in clinical practice, ongoing multidisciplinary research shows promise for achieving functional selectivity in targeting specific pathways.
These progresses could lead to the development of safer and more effective cannabinoid-based therapies in the future.”
https://pubmed.ncbi.nlm.nih.gov/39828030/
https://www.sciencedirect.com/science/article/abs/pii/S0163725825000075?via%3Dihub