“Medical Cannabis and its major cannabinoids (-)-trans-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are gaining momentum for various medical purposes as their therapeutic qualities are becoming better established. However, studies regarding their efficacy are oftentimes inconclusive. This is chiefly because Cannabis is a versatile plant rather than a single drug and its effects do not depend only on the amount of THC and CBD. Hundreds of Cannabis cultivars and hybrids exist worldwide, each with a unique and distinct chemical profile. Most studies focus on THC and CBD, but these are just two of over 140 phytocannabinoids found in the plant in addition to a milieu of terpenoids, flavonoids and other compounds with potential therapeutic activities. Different plants contain a very different array of these metabolites in varying relative ratios, and it is the interplay between these molecules from the plant and the endocannabinoid system in the body that determines the ultimate therapeutic response and associated adverse effects. Here, we discuss how phytocannabinoid profiles differ between plants depending on the chemovar types, review the major factors that affect secondary metabolite accumulation in the plant including the genotype, growth conditions, processing, storage and the delivery route; and highlight how these factors make Cannabis treatment highly complex.”
https://pubmed.ncbi.nlm.nih.gov/35548332/
“The use of medical Cannabis is ever increasing in the treatment of numerous conditions as it has been proven to be both effective and safe, but the Cannabis plant contains more than 500 different components, each with potential therapeutic qualities. The components of Cannabis act together, hitting several targets at once and mutually enhancing each other’s activity so that the overall outcome is greater than that of their additive effect.
Cannabis can treat a multitude of very different conditions as it exerts its effects via the ECS, which is involved in many physiological processes. Cannabis treatment can be personalized to both the condition and the person to improve treatment outcomes while also reducing the drug load and minimizing the adverse effects. “
https://www.frontiersin.org/articles/10.3389/fphar.2022.894960/full