Evaluating cannabis substitution for alcohol within the context of a canadian managed alcohol program

Introduction: Managed Alcohol Programs (MAPs) provide beverage alcohol alongside housing and social supports to mitigate alcohol-related harms among individuals experiencing severe alcohol use disorder (AUD) and unstable housing. MAPs have been shown to stabilize alcohol use, reduce alcohol-related harms, improve quality of life, and decrease emergency service utilization. However, concerns about the long-term health risks associated with high levels of alcohol use have driven interest in cannabis substitution as an additional harm reduction strategy. Given the lower harm profile of cannabis, its integration into MAPs offers a promising avenue for further reducing alcohol-related harms. This study evaluates a novel cannabis substitution program within a Canadian MAP, leveraging the unique context of cannabis legalization and harm reduction programming.

Methods: Beginning in January 2023, participants (N = 35) were offered the choice of a pre-rolled cannabis joint or their prescribed alcohol dose multiple times per day. Data were drawn from five waves of quantitative surveys (January 2023 to February 2024; n = 20), two years of program records (January 2022 to February 2024; N = 35), and qualitative interviews (n = 14). Hierarchical mixed-effects models were used to predict alcohol use by cannabis use and time. Qualitative data were analyzed using interpretive description methodology.

Results: The final model found evidence of a substitution effect: participants who used more cannabis on average also consumed less alcohol overall. Specifically, each additional 0.4-gram joint consumed (approximately 15.2 standard THC units or 76 mg THC) was associated with an estimated 2.43 fewer mean daily standard drinks. Within-person cannabis use was not a significant predictor, indicating that short-term fluctuations in cannabis use were not associated with concurrent changes in alcohol consumption. Alcohol use also declined over time. Qualitative findings provide insights into the dynamic factors shaping drinking and cannabis use patterns.

Conclusion: This study highlights the potential for cannabis substitution to meaningfully reduce alcohol-related harms. Implications for program development and future research evaluating changes in health, wellbeing, and harm outcomes are discussed.”

https://pubmed.ncbi.nlm.nih.gov/41313909

“Emerging evidence suggests that cannabis substitution for alcohol may offer a promising approach to mitigating alcohol-related harms. Cannabis is associated with lower toxicity, fewer long-term health risks, and a lower likelihood of overdose compared to alcohol.”

https://www.sciencedirect.com/science/article/pii/S0955395925003792?via%3Dihub

Cannabidiol alleviates methamphetamine-induced autophagy and oxidative stress by suppressing sigma 1 receptor expression

“Methamphetamine (METH) is currently considered one of the most notorious drugs globally. Chronic long-term METH abuse results in severe neurotoxicity, wherein oxidative stress and autophagy are key pathological phenomena and toxic phenotypes. However, the molecular mechanism by which METH induces oxidative stress and autophagy remains elusive.

In this study, METH-induced autophagy and oxidative stress were replicated in both HT22 cells and C57BL/6 J mice. Notably, METH up-regulated the expression of chaperon protein sigma 1 receptor (S1R). However, METH-induced autophagy and oxidative stress were alleviated after targeted intervention with S1R using the chemical inhibitor, gene knockdown, or knockout techniques.

More importantly, cannabidiol (CBD), a non-psychoactive natural cannabinoid derived from cannabis, exhibited therapeutic efficacy by down-regulating the high expression of S1R, autophagy, and oxidative stress following METH exposure both in vivo and in vitro.

Overall, these results suggest that METH mediates autophagy and oxidative stress by up-regulating S1R expression, whereas CBD alleviates METH-induced autophagy and oxidative stress by suppressing S1R expression.

This study expands our understanding of METH-induced neurotoxicity, identifying S1R as a potential therapeutic target against aberrant autophagy and oxidative stress, and further validates the medical value of CBD for the treatment of METH use disorder.”

https://pubmed.ncbi.nlm.nih.gov/41314517

“Cannabidiol (CBD), a non-psychoactive natural cannabinoid derived from cannabis, exerts distinct pharmacological effects, such as antioxidant, anti-inflammatory, and neuroprotective effects, demonstrating therapeutic potential in several neurological diseases.”

“CBD alleviated METH-induced autophagy and oxidative stress by suppressing S1R expression.”

https://www.sciencedirect.com/science/article/abs/pii/S0898656825006953?via%3Dihub

Cannabis Laws and Opioid Use Among Commercially Insured Patients With Cancer Diagnoses

Importance: Pain is a prevalent cancer-related symptom, but limited research investigates whether cannabis is an effective analgesic for cancer pain.

Objective: To examine the association of medical and recreational cannabis dispensary availability on prescription opioid dispensing among commercially insured patients with cancer.

Design, setting, and participants: This cross-sectional study used synthetic control to investigate the association of cannabis dispensary openings with pain medication dispensing among patients with cancer. Data were extracted from Optum’s deidentified Clinformatics Data Mart database from January 1, 2007, to December 31, 2020. The study population included patients aged 18 to 64 years with a cancer diagnosis and at least 6 months of continuous enrollment. Associations were estimated by age, race and ethnicity, and sex. Data were analyzed between December 2024 and February 2025.

Exposures: Exposures included indicators for whether a medical or recreational cannabis dispensary was open in each state-quarter.

Main outcomes and measures: The outcome measures for opioids prescriptions were (1) the rate of patients with a prescription per 10 000 patients, (2) the quarterly mean days’ supply per prescription, and (3) the quarterly mean number of prescriptions per patient.

Results: The study included a mean (SD) of 3.05 (0.86) million patients annually across the US (mean [SD] age, 43.7 [9.6] years; mean [SD] 59.0% [0.32%] female). Medical cannabis dispensary openings were associated with significant reductions in all opioid outcomes. The rate of patients with cancer with opioid prescriptions changed by -41.07 per 10 000 (95% CI, -54.78 to -27.36 per 10 000; P < .001), the quarterly mean days’ supply by -2.54 days (95% CI, -3.16 to -1.92 days; P < .001), and the mean number of prescriptions per patient by -0.099 (95% CI, -0.121 to -0.077; P < .001). Recreational dispensary openings were also associated with reductions in opioid outcomes, though estimated treatment effects were smaller. The rate of prescriptions changed by -20.63 per 10 000 (95% CI, -35.35 to -5.91 per 10 000; P = .049), the mean daily supply by -1.09 days supplied per prescription (95% CI, -1.72 to -0.46 days; P = .04), and the mean number of prescriptions per patient by -0.097 (95% CI, -0.134 to -0.060; P = .01).

Conclusions and relevance: This study’s findings indicate cannabis may be a substitute for opioids in the management of cancer-related pain. However, further research directly observing cannabis use is needed to evaluate the efficacy of cannabis as a treatment for cancer-related pain.”

https://pubmed.ncbi.nlm.nih.gov/41105418

“Results of this study suggest that cannabis may serve as a substitute for opioids in managing cancer-related pain, underscoring the potential of cannabis policies to impact opioid use.”

https://jamanetwork.com/journals/jama-health-forum/fullarticle/2840030

A Preliminary Investigation of Brain Cannabinoid Receptor Type 1 (CB1R) Availability in Men with Opioid Use Disorder

pubmed logo

“The endocannabinoid (eCB) system has been proposed as a potential target for developing new medications for opioid use disorder (OUD). However, the status of the eCB system, specifically brain cannabinoid receptor type 1 (CB1R) in OUD, is unknown.

In this study, CB1R availability was measured in males with OUD on stable opioid agonist treatment (OAT) (n = 10) versus healthy controls (HC) (n = 18), using High-Resolution Research Tomography (HRRT) and the CB1R-specific radiotracer, [ 11 C]OMAR. The average volume of distribution ( V T ) across 13 regions was compared between the OUD and HC groups. Average V T was 15% lower in OUD vs. HC subjects (p = 0.04). Lower V T in OUD compared to HC was also observed in several corticolimbic areas.

Within OUD no effects on CB1R availability were observed for treatment medication (methadone vs. buprenorphine), current stress levels, or antidepressant medication. No associations between the average V T and duration of OAT treatment or time since the last illicit opioid use were observed.

This preliminary study suggests lower CB1R availability in men with OUD. Larger studies are necessary to replicate these findings. Future research should also draw from a more heterogeneous population, particularly by incorporating females, to better assess the potential confounding and moderating clinical factors. If confirmed, the observed alterations in CB1R availability in OUD may provide a rationale for targeting the eCB system in the treatment of OUD.”

https://pubmed.ncbi.nlm.nih.gov/41282260

https://www.researchsquare.com/article/rs-7715611/v1

Cannabidiol modulates brain molecular alterations, gut microbiota dysbiosis and alcohol self-administration in a mouse model of fetal alcohol spectrum disorder

pubmed logo

“Fetal Alcohol Spectrum Disorder (FASD) is a range of neurodevelopmental abnormalities caused by Perinatal Alcohol Exposure (PAE), leading to profound behavioral and molecular disturbances in the offspring. Unraveling the central and peripheral mechanisms involved, including the microbiota-gut-brain axis, is crucial to improving our understanding of the disease and developing new treatment strategies from a sex perspective.

In this study, we investigated the impact of PAE on emotional behavior, brain biomarkers, and gut microbiota composition and diversity in a preclinical C57BL/6 J mouse model, as well as the extent of their vulnerability to alcohol consumption. Furthermore, we have also explored the potential modulatory effects of cannabidiol (CBD) administered chronically (30 mg/kg/day, i.p.) from weaning on PAE-induced sex-dependent emotional and brain molecular impairments, gut microbiota dysbiosis, and increased alcohol reinforcing and motivational actions.

FASD model mice showed increased anxiety- and depressive-like behavior accompanied by sex-dependent changes in synaptic density, dopamine D2/D3 receptors availability, cannabinoid receptors 1 and 2 (Cnr1/Cnr2), tyrosine hydroxylase (Th), and serotonin transporter (Slc6a4) gene expression, and gut microbiota dysbiosis.

Interestingly, CBD sex-dependently improved and/or normalized PAE-induced behavioral and molecular disturbances. In addition, females but not males exposed to the animal model of FASD showed a higher motivation to drink alcohol, which CBD abolished.

Our findings provide new insights into the brain and gut microbiota sex-dependent mechanisms involved in FASD pathophysiology and further highlight the therapeutic potential of CBD to improve the management of FASD-induced emotional disturbances and alcohol addiction from a sex-oriented approach.”

https://pubmed.ncbi.nlm.nih.gov/41273930

“FASD model mice displayed emotional disturbances (anxiety- and depressive-like behaviors), which CBD alleviated.”

“Together, our findings reveal that PAE profoundly alters gut microbiota and that CBD can modulate this dysbiosis, promoting beneficial taxa and modifying community structure in a sex-dependent manner.

CBD administration also mitigated anxiety- and depression-like behaviors and modulated gene expression of endocannabinoid and monoaminergic markers.

This study opens the door to the development of personalized interventions aimed at restoring the microbiota and modulating the gut-brain axis to mitigate the cognitive and behavioral deficits characteristic of this disorder.”

https://www.sciencedirect.com/science/article/pii/S0753332225009850?via%3Dihub

Acute Effects of Cannabis on Alcohol Craving and Consumption: A Randomized Controlled Crossover Trial

pubmed logo

Objective: Cannabis use is strongly linked with heavy drinking and worse alcohol treatment outcomes; however, it may also contribute to decreased alcohol consumption. To date, no human studies have established a causal effect of cannabis on alcohol motivation. The aim of this double-blind crossover randomized clinical trial was to examine dose-dependent acute effects of delta-9-tetrahydrocannabinol (THC) on alcohol craving and consumption.

Methods: Across three experimental days, 157 participants reporting heavy alcohol use and cannabis use two or more times weekly were randomized to smoke cannabis cigarettes containing 7.2% THC, 3.1% THC, or 0.03% THC (placebo), followed by exposures to neutral and personalized alcohol cues and an alcohol choice task for alcohol self-administration. A total of 138 participants completed two or more experimental sessions (mean age, 25.6 years [SD=5.1]; 35% women; 45% racial/ethnic minorities). Primary outcomes included craving, Alcohol Craving Questionnaire-Short Form, Revised (ACQ-SF-R), and an alcohol urge question; the secondary outcome was percent of total available milliliters of alcohol consumed.

Results: There were no significant effects of cannabis on ACQ-SF-R ratings after smoking and during alcohol cue exposure, but 7.2% THC reduced alcohol urge immediately after smoking. Participants consumed significantly less alcohol after smoking cannabis with 3.1% THC and 7.2% THC, reducing consumption by 19% and 27%, respectively.

Conclusions: Following overnight cannabis abstinence, smoking cannabis acutely decreased alcohol consumption compared to placebo. Further controlled research on a variety of cannabinoids is needed to inform clinical alcohol treatment guidelines.”

https://pubmed.ncbi.nlm.nih.gov/41254853

“These data provide preliminary evidence that cannabis may reduce alcohol consumption under some conditions”

https://psychiatryonline.org/doi/10.1176/appi.ajp.20250115

Medical Marijuana and Opioid Usage: An Analysis of Patient Perceptions in Louisiana

“Background: The opioid crisis has continued in the United States, resulting in a healthcare crisis. Medical marijuana (MM) offers an alternative to those with addictions or in search of pain and inflammation management without the negative aspects of opioids. 

Methods: A survey of more than 2,000 Louisianians on the frequency and amount of MM use revealed significant relationships between race, age, reason for use, prescription use, and whether they stopped using MM, as well as time in the MM program and the method of ingestion. 

Results: Respondents reported lower levels of pain with MM usage by an average of 3.4 points on a ten-point scale (Z = -35.77, ρ ≤ .001). Those using prescriptions for pain were 1.5 times more likely to use MM less frequently (OR = 1.524, 95% CI: 1.114 – 2.074, ρ ≤ .01). Concordantly, those reporting that they had stopped using prescriptions for pain increased the odds of using more MM by 26.5 percent (OR = .735, 95% CI: .586 – .923, ρ ≤ .001). 

Conclusions: These relationships support the idea that MM substitutes for prescription painkillers.”

https://pubmed.ncbi.nlm.nih.gov/41136335/

https://www.tandfonline.com/doi/full/10.1080/10826084.2025.2575429

Proof of concept for high-dose Cannabidiol pretreatment to antagonize opioid induced persistent apnea in mice

pubmed logo

“Background: Opioid related fatalities remain a public health crisis in the US. Currently, the only way to restore breathing following an opioid induced persistent apnea is with the administration of the opioid antagonist naloxone, but it also reverses analgesia, euphoria, and induces precipitated withdrawal in opioid dependent individuals.

Methods: Using whole-body plethysmography, we assessed changes in breathing frequency in awake behaving mice resulting from a single fentanyl dose (50 mg/kg i.p.) that followed i.p. pretreatment with saline, vehicle, naloxone (100 mg/kg), cannabidiol (CBD) (250 mg/kg), or CBD + naloxone. Then we assessed the delay to opioid-induced persistent apnea (OIPA) and the median lethal dose (LD50) of fentanyl during a continuous i.c.v. infusion of fentanyl (100 ng/min), in urethane anesthetized mice, following pretreatment with saline, vehicle, naloxone (100 mg/kg), CBD (250 mg/kg), or CBD + naloxone i.p.

Results: Here we show acute pretreatment with CBD is as effective as naloxone at preventing opioid-induced respiratory depression from fentanyl in awake mice, and increasing LD50 of fentanyl in urethane anesthetized mice. When pre-administered together, CBD + naloxone, increased LD50 of fentanyl even more than CBD or naloxone alone in urethane anesthetized mice.

Conclusion: CBD may be an effective preventative therapy for OIPA by increasing the time before apnea onset and potentially enhancing the efficacy of naloxone as an additional strategy to save lives.”

https://pubmed.ncbi.nlm.nih.gov/41132595/

“This proof of concept using CBD as a prophylactic therapeutic for prevention of fatal OIPA in mice has considerable potential for public health benefit.”

https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1654787/full

Cannabidiol alleviates methamphetamine addiction via targeting ATP5A1 and modulating the ATP-ADO-A1R signaling pathway

pubmed logo

“Cannabidiol (CBD), a non-psychoactive cannabinoid, shows great promise in treating methamphetamine (METH) addiction. Nonetheless, the molecular target and the mechanism through which CBD treats METH addiction remain unexplored.

Herein, CBD was shown to counteract METH-induced locomotor sensitization and conditioned place preference. Additionally, CBD mitigated the adverse effects of METH, such as cristae loss, a decline in ATP content, and a reduction in membrane potential. Employing an activity-based protein profiling approach, a target fishing strategy was used to uncover CBD’s direct target.

ATP5A1, a subunit of ATP synthase, was identified and validated as a CBD target. Moreover, CBD demonstrated the ability to ameliorate METH-induced ubiquitination of ATP5A1 via the D376 residue, thereby reversing the METH-induced reduction of ATP5A1 and promoting the assembly of ATP synthase. Pharmacological inhibition of the ATP efflux channel pannexin 1, blockade of ATP hydrolysis by a CD39 inhibitor, and blocking the adenosine A1 receptor (A1R) all attenuated the therapeutic benefits of CBD in mitigating METH-induced behavioral sensitization and CPP. Moreover, the RNA interference of ATP5A1 in the ventral tegmental area resulted in the reversal of CBD’s therapeutic efficacy against METH addiction.

Collectively, these data show that ATP5A1 is a target for CBD to inhibit METH-induced addiction behaviors through the ADO-A1R signaling pathway.”

https://pubmed.ncbi.nlm.nih.gov/41132843/

“This study verifies that ATP5A1 directly binds with CBD both in vitro and in vivo, counteracting METH-triggered ATP5A1 ubiquitination and enhancing the assembly of ATP synthase, thereby preventing METH-induced mitochondrial damage. Additionally, CBD inhibits METH-induced addictive behaviors through the ADO–A1R signaling pathway. The results indicate that CBD alleviates methamphetamine addiction by targeting ATP5A1. Besides METH, CBD has shown potential therapeutic effects on addiction to opioids18 and THC66. This implies that CBD has therapeutic potential for various forms of substance abuse. Consequently, ATP5A1 may serve as a target in the treatment of polysubstance use disorders, which warrants further exploration.”

https://www.sciencedirect.com/science/article/pii/S221138352500560X?via%3Dihub

The Cannabinoid System as a Potential Novel Target for Alcohol-Associated Liver Disease: A Propensity-Matched Cohort Study

“Background: Alcohol-associated liver disease (ALD) is a leading cause of liver-related morbidity and mortality, yet effective therapeutic options remain limited. Preclinical data suggest that modulation of the hepatic endocannabinoid system, particularly via cannabidiol (CBD), may reduce alcohol-induced liver injury. Due to CBD’s limited clinical use, we sought to evaluate the association between cannabis use and ALD risk among patients with alcohol use disorder (AUD).

Methods: Using the TriNetX US Collaborative Network, we identified adult patients with AUD between 2010 and 2022. Three cohorts were constructed: cannabis use disorder (CUD), cannabis users without cannabis abuse or dependence (CU) and non-cannabis users (non-CU). Outcomes included ALD, hepatic decompensation and composite all-cause mortality over 3 years. Incidence and hazard ratios were calculated using Kaplan-Meier analysis and Cox regression.

Results: After matching, 33 114 patients were included in each of the CUD and non-CU groups. Compared to non-CU, CUD was associated with a lower risk of ALD (HR 0.60, 95% CI 0.53-0.67; p < 0.001), hepatic decompensation (HR 0.83, 95% CI 0.73-0.95; p =0.005) and all-cause mortality (HR 0.86, 95% CI 0.80-0.94; p < 0.001) among individuals with AUD. Although CU was associated with lower risks of ALD, its risks of hepatic decompensation and all-cause mortality were similar to those of the non-CU cohort with AUD.

Conclusion: In this propensity-matched cohort study of patients with AUD, cannabis use was associated with a reduced risk of ALD, with the greatest risk reduction seen in patients with CUD compared to CU and non-CU. Our findings suggest that modulation of cannabinoid receptors may offer a new target for the development of pharmacological therapies for ALD.”

https://pubmed.ncbi.nlm.nih.gov/41117396/

  • “Cannabis use was linked to lower risks of ALD, liver-related complications and death compared to non-cannabis users.
  • These findings suggest the cannabinoid system may represent a promising therapeutic target for ALD.”

https://onlinelibrary.wiley.com/doi/10.1111/liv.70401