The pharmacological reduction of hippocampal neurogenesis attenuates the protective effects of cannabidiol on cocaine voluntary intake.

Addiction Biology banner“The administration of cannabidiol has shown promising evidence in the treatment of some neuropsychiatric disorders, including cocaine addiction. However, little information is available as to the mechanisms by which cannabidiol reduces drug use and compulsive seeking.

We investigated the role of adult hippocampal neurogenesis in reducing cocaine voluntary intake produced by repeated cannabidiol treatment in mice.

Cannabidiol (20 mg/kg) reduced cocaine self-administration behaviour acquisition and total cocaine intake and enhanced adult hippocampal neurogenesis.

The present study confirms that adult hippocampal neurogenesis is one of the mechanisms by which cannabidiol lowers cocaine reinforcement and demonstrates the functional implication of adult hippocampal neurogenesis in cocaine voluntary consumption in mice.

Such findings highlight the possible use of cannabidiol for developing new pharmacotherapies to manage cocaine use disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31162770

https://onlinelibrary.wiley.com/doi/abs/10.1111/adb.12778

Medical Cannabis: Effects on Opioid and Benzodiazepine Requirements for Pain Control.

SAGE Journals

“The objective of this study was to determine if the use of medical cannabis affects the amount of opioids and benzodiazepines used by patients on a daily basis.

METHODS:

This single-center, retrospective cohort study evaluated opioid and benzodiazepine doses over a 6-month time period for patients certified to use medical cannabis for intractable pain. All available daily milligram morphine equivalents (MMEs) and daily diazepam equivalents (DEs) were calculated at baseline and at 3 and 6 months.

RESULTS:

A total of 77 patients were included in the final analysis. There was a statistically significant decrease in median MME from baseline to 3 months (-32.5 mg; P = 0.013) and 6 months (-39.1 mg; P = 0.001). Additionally, there was a non-statistically significant decrease in median DE at 3 months (-3.75 mg; P = 0.285) and no change in median DE from baseline to 6 months (-0 mg; P = 0.833). Conclusion and Relevance: Over the course of this 6-month retrospective study, patients using medical cannabis for intractable pain experienced a significant reduction in the number of MMEs available to use for pain control. No significant difference was noted in DE from baseline. Further prospective studies are warranted to confirm or deny the opioid-sparing effects of medical cannabis when used to treat intractable pain.”

https://www.ncbi.nlm.nih.gov/pubmed/31129977

https://journals.sagepub.com/doi/abs/10.1177/1060028019854221?journalCode=aopd

Effects of cannabidiol on alcohol-related outcomes: A review of preclinical and human research.

Cover image for Experimental and Clinical Psychopharmacology

“This article reviews preclinical and human studies examining the effects of CBD administration on alcohol responses. Preliminary preclinical results suggest that CBD can attenuate alcohol consumption and potentially protect against certain harmful effects of alcohol, such as liver and brain damage.”

https://www.ncbi.nlm.nih.gov/pubmed/31120285

https://psycnet.apa.org/doiLanding?doi=10.1037%2Fpha0000272

Therapeutic prospects of cannabidiol for alcohol use disorder and alcohol-related damages on the liver and the brain

 Image result for frontiers in pharmacology“Cannabidiol (CBD) is a natural compound of cannabis, which exerts complex and widespread immunomodulatory, antioxidant, anxiolytic, and antiepileptic properties. Many experimental data suggest that CBD could have several types of application in alcohol use disorder (AUD) and alcohol-related damage on the brain and the liver.

Experimental studies converge to find that CBD reduces the overall level of alcohol drinking in animal models of AUD by reducing ethanol intake, motivation for ethanol, relapse, and by decreasing anxiety and impulsivity. Moreover, CBD has been shown to reduce alcohol-related steatosis and fibrosis in the liver by reducing lipid accumulation, stimulating autophagy, modulating inflammation, reducing oxidative stress, and inducing death of activated hepatic stellate cells. Last, CBD has been found to reduce alcohol-related brain damage, preventing neuronal loss by its antioxidant and immunomodulatory properties.

CBD could directly reduce alcohol drinking in subjects with AUD. But other original applications warrant human trials in this population. By reducing alcohol-related processes of steatosis in the liver, and brain alcohol-related damage, CBD could improve both the hepatic and neurocognitive outcomes of subjects with AUD, regardless of the individual drinking trajectories. This might pave the way for testing new harm reduction approaches in AUD, i.e., for protecting the organs of subjects with an ongoing AUD.”

https://www.frontiersin.org/articles/10.3389/fphar.2019.00627/abstract

Targeting Peripheral CB1 Receptors Reduces Ethanol Intake via a Gut-Brain Axis.

Cell Metabolism

“Endocannabinoids acting on the cannabinoid-1 receptor (CB1R) or ghrelin acting on its receptor (GHS-R1A) both promote alcohol-seeking behavior, but an interaction between the two signaling systems has not been explored. Here, we report that the peripheral CB1R inverse agonist JD5037 reduces ethanol drinking in wild-type mice but not in mice lacking CB1R, ghrelin peptide or GHS-R1A. JD5037 treatment of alcohol-drinking mice inhibits the formation of biologically active octanoyl-ghrelin without affecting its inactive precursor desacyl-ghrelin. In ghrelin-producing stomach cells, JD5037 reduced the level of the substrate octanoyl-carnitine generated from palmitoyl-carnitine by increasing fatty acid β-oxidation. Blocking gastric vagal afferents abrogated the ability of either CB1R or GHS-R1A blockade to reduce ethanol drinking. We conclude that blocking CB1R in ghrelin-producing cells reduces alcohol drinking by inhibiting the formation of active ghrelin and its signaling via gastric vagal afferents. Thus, peripheral CB1R blockade may have therapeutic potential in the treatment of alcoholism.”

https://www.ncbi.nlm.nih.gov/pubmed/31105045

https://www.sciencedirect.com/science/article/pii/S1550413119301962?via%3Dihub

Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals With Heroin Use Disorder: A Double-Blind Randomized Placebo-Controlled Trial

Image result for american journal of psychiatry“Despite the staggering consequences of the opioid epidemic, limited nonopioid medication options have been developed to treat this medical and public health crisis.

This study investigated the potential of cannabidiol (CBD), a nonintoxicating phytocannabinoid, to reduce cue-induced craving and anxiety, two critical features of addiction that often contribute to relapse and continued drug use, in drug-abstinent individuals with heroin use disorder.

Acute CBD administration, in contrast to placebo, significantly reduced both craving and anxiety induced by the presentation of salient drug cues compared with neutral cues. CBD also showed significant protracted effects on these measures 7 days after the final short-term (3-day) CBD exposure. In addition, CBD reduced the drug cue–induced physiological measures of heart rate and salivary cortisol levels. There were no significant effects on cognition, and there were no serious adverse effects.

 Conclusions:

CBD’s potential to reduce cue-induced craving and anxiety provides a strong basis for further investigation of this phytocannabinoid as a treatment option for opioid use disorder.”

https://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2019.18101191

“Study finds CBD effective in treating heroin addiction”  https://www.cnn.com/2019/05/21/health/heroin-opioid-addiction-cbd-study/index.html

“CBD oil may help limit cravings and anxiety in heroin users, study finds”  https://www.nbcnews.com/health/health-news/cbd-oil-may-help-limit-cravings-anxiety-heroin-users-study-n1007856

“Cannabis Compound Eases Anxiety and Cravings of Heroin Addiction”  https://www.scientificamerican.com/article/cannabis-compound-eases-anxiety-and-cravings-of-heroin-addiction/?redirect=1

Gender differences in the effects of cannabidiol on ethanol binge drinking in mice.

Addiction Biology banner“The purpose of this study was to explore the effects of cannabidiol (CBD) on binge drinking and evaluate potential gender-related differences.

Chronic CBD administration (30, 60 and 90 mg/kg) reduced ethanol intake in males, whereas in females a significant reduction was only achieved with the highest dose (90 mg/kg). Repeated administration with CBD (60 mg/kg) significantly reduced TH and OPRM1 in males. In addition, CBD (30 and 60 mg/kg) significantly reduced CB1 r in males. No effect was observed in females.

Taken together, these findings suggest that CBD may be of interest for treating binge-drinking patterns and that gender-related difference may affect the treatment outcome.”

https://www.ncbi.nlm.nih.gov/pubmed/31074060

https://onlinelibrary.wiley.com/doi/abs/10.1111/adb.12765

Endocannabinoid contributions to alcohol habits and motivation: Relevance to treatment.

Addiction Biology banner“Individuals with alcohol use disorder exhibit compulsive habitual behaviors that are thought to be, in part, a consequence of chronic and persistent use of alcohol.

The endocannabinoid system plays a critical role in habit learning and in ethanol self-administration, but the role of this neuromodulatory system in the expression of habitual alcohol seeking is unknown.

Here, we investigated the role of the endocannabinoid system in established alcohol habits using contingency degradation in male C57BL/6 mice.

These results demonstrate an important role for endocannabinoid signaling in the motivation to seek ethanol, in ethanol-motivated habits, and suggest that pharmacological manipulations of endocannabinoid signaling could be effective therapeutics for treating alcohol use disorder.”

https://www.ncbi.nlm.nih.gov/pubmed/31056846

https://onlinelibrary.wiley.com/doi/abs/10.1111/adb.12768

Δ9-tetrahydrocannabinol attenuates oxycodone self-administration under extended access conditions.

Neuropharmacology

“Growing nonmedical use of prescription opioids is a global problem, motivating research on ways to reduce use and combat addiction.

Medical cannabis (“medical marijuana”) legalization has been associated epidemiologically with reduced opioid harms and cannabinoids have been shown to modulate effects of opioids in animal models.

This study was conducted to determine if Δ9-tetrahydrocannabinol (THC) enhances the behavioral effects of oxycodone.

Together these data demonstrate additive effects of THC and oxycodone and suggest the potential use of THC to enhance therapeutic efficacy, and to reduce the abuse, of opioids.”

https://www.ncbi.nlm.nih.gov/pubmed/30980837

“Δ9-tetrahydrocannabinol (THC) enhances the antinociceptive effects of oxycodone. Vaporized and injected THC reduces oxycodone self-administration. Cannabinoids may reduce opioid use for analgesia. Cannabinoids may reduce nonmedical opioid use.”  

https://www.sciencedirect.com/science/article/pii/S0028390819301212?via%3Dihub

Investigating the Relationships Between Alcohol Consumption, Cannabis Use, and Circulating Cytokines: A Preliminary Analysis.

Alcoholism: Clinical and Experimental Research banner

“In recent years, human and animal studies have converged to support altered inflammatory signaling as a molecular mechanism underlying the pathophysiology of alcohol use disorders (AUDs). Alcohol binds to receptors on immune cells, triggering signaling pathways that produce pro-inflammatory cytokines. Chronic inflammation is associated with tissue damage, which may contribute to negative effects of AUD. Conversely, cannabis is associated with decreased inflammatory signaling, and animal studies suggest that cannabinoids may impact alcohol-induced inflammation. Thus, the impact of cannabis on inflammation in AUDs in humans warrants examination.

METHODS:

We explored the relationship between self-reported alcohol and cannabis use and circulating levels of the pro-inflammatory cytokines interleukin 6 (IL-6), IL-8, and IL-1β in the blood. Among 66 regular drinkers (mean age = 30.08), we examined circulating cytokines and administered questionnaires assessing alcohol consumption and days of cannabis use over the past 90 days. We examined whether alcohol consumption, cannabis use, and gender were associated with changes in circulating cytokines, and whether there was a significant interaction between alcohol and cannabis use predicting blood levels of circulating cytokines.

RESULTS:

A positive association between alcohol and IL-6 emerged. We also observed a negative association between cannabis and IL-1β. Follow-up moderation analyses indicated a cannabis by alcohol interaction predicting circulating IL-6, such that cannabis nonusers showed a stronger relationship between alcohol and IL-6 compared to cannabis users.

CONCLUSIONS:

These preliminary findings suggest that cannabinoid compounds may serve to mitigate inflammation associated with alcohol use. In addition, the present results provide data to inform future investigations, with the goal of ultimately leveraging knowledge of the role of inflammation in AUDs to develop more effective treatments focused on novel immune targets.”

https://www.ncbi.nlm.nih.gov/pubmed/29286537

https://onlinelibrary.wiley.com/doi/abs/10.1111/acer.13592