The role of CB1 receptors in psychostimulant addiction.

Abstract

“Recent studies have implicated the endocannabinoid (eCB) system in the neuronal mechanisms underlying substance dependence. Here, we review results of studies using cannabinoid receptor subtype 1 (CB1) knockout mice as well as CB1 antagonists to elucidate the role of this neurotransmitter system in psychostimulant addiction. The overall picture is that CB1 receptors appear not to be involved in psychostimulant reward, nor in the development of dependence to such substances. In contrast, the eCB system appears to play a role in the persistence of psychostimulant addiction. In particular, CB1 receptors have been found to play a cardinal role in mediating reinstatement of previously extinguished drug-seeking behavior upon re-exposure to the drug or drug-associated cues. The anatomical loci as well as the neuronal mechanisms of the relapse-preventing effects of CB1 antagonists are still poorly understood, although interactions of the eCB system with afferent glutamatergic and possibly dopaminergic projections to the nucleus accumbens are most likely involved. In addition, CB1 receptors seem to modulate drug-related memories, in line with the hypothesized role of the eCB system in memory-related plasticity. Together, these findings suggest that modulators of the eCB system represent a promising novel type of therapy to treat drug addiction.”

http://www.ncbi.nlm.nih.gov/pubmed/18482432

Endocannabinoid regulation of relapse mechanisms.

Abstract

“Addiction involves a complex neuropharmacologic behavioural cycle, in which positive reinforcement exerted by the drug and the negative state of withdrawal drive the user to extremes to obtain the drug. Comprehensive studies have established that relapse is the most common outcome of recovery programs treating addictive behaviours. Several types of anticraving medication are available nowadays, such as naltrexone for the treatment of alcoholism, bupropion for nicotine, methadone or buprenorphine for heroin. This review focuses on recent behavioural data providing a rationale for an endocannabinoid mechanism underlying reinstatement of compulsive drug seeking. Studies supporting the contention that reinstatement of extinguished drug self-administration behaviour may be generated by cannabinoid CB1 receptor agonists and attenuated, if not blocked, by CB1 receptor antagonists, are here reviewed. In support to these findings, conditioned place preference studies substantiate the involvement of the endocannabinoid system in recidivism mechanisms by demonstrating that motivation to relapse can be triggered by CB1 receptor activation while blockade of such receptors may prevent reinstatement of place conditioning induced by either drug primings or drug-associated cues. Finally, biochemical studies evaluating changes in endocannabinoid levels, CB1 receptor density and CB1 mRNA expression during re-exposure to drug following extinction are also examined. Taken together, the evidence available has important implications in the understanding and treatment of relapsing episodes in patients undergoing detoxification.”

http://www.ncbi.nlm.nih.gov/pubmed/17936008

An endocannabinoid mechanism in relapse to drug seeking: a review of animal studies and clinical perspectives.

Abstract

“Detoxification from drug abuse is strongly threatened by the occurrence of renewed episodes of drug intake. In human addicts, relapse to drug seeking may take place even after a considerably long period from the last drug consumption. Over the last decade, the endocannabinoid system has received remarkable attention due to its unique features, including its rewarding properties closely resembling those of the most commonly abused substances and its multiple therapeutic implications. Although limited at present, evidence is now emerging on a possible participation of the endogenous cannabinoid system in the regulation of relapsing phenomena. Both stimulation and blockade of the central cannabinoid CB-sub1 receptor have proved to play an important role in drug- as well as in cue-induced reinstatement of drug seeking behavior. Indeed, while CB-sub1 receptor stimulation may elicit relapse not only to cannabinoid seeking but also to cocaine, heroin, alcohol and methamphetamine, this effect is significantly attenuated, when not fully prevented, by pretreatment with the CB-sub1 receptor antagonist rimonabant. However, corroborating data on the involvement of the cannabinoid system in stress-induced reinstatement are still rather scarce. The present review attempts to collect data obtained from different laboratories using diverse experimental approaches, to provide a comprehensive picture of the recent evidence of a relationship between the cannabinoid system and the neurobiological mechanisms leading to relapse. For each class of abused drugs, the conspicuous progress made in delineating the role of the endocannabinoid system in relapse to drug seeking has been examined by placing particular emphasis on the findings obtained from behavioral studies. After summarizing findings and implications emerging from the reviewed studies, we conclude by briefly discussing what information is still missing and how missing information might be obtained.”

http://www.ncbi.nlm.nih.gov/pubmed/16839608

Involvement of the endocannabinoid system in drug addiction.

Abstract

“Recent studies have shown that the endocannabinoid system is involved in the common neurobiological mechanism underlying drug addiction. This system participates in the primary rewarding effects of cannabinoids, nicotine, alcohol and opioids, through the release of endocannabinoids in the ventral tegmental area. Endocannabinoids are also involved in the motivation to seek drugs by a dopamine-independent mechanism, demonstrated for psychostimulants and opioids. The endocannabinoid system also participates in the common mechanisms underlying relapse to drug-seeking behaviour by mediating the motivational effects of drug-related environmental stimuli and drug re-exposure. In agreement, clinical trials have suggested that the CB(1) cannabinoid antagonist rimonabant can cause smoking cessation. Thus, CB(1) cannabinoid antagonists could represent a new generation of compounds to treat drug addiction.”

http://www.ncbi.nlm.nih.gov/pubmed/16483675

Drug Addiction

Abstract

“Many drugs of abuse, including cannabinoids, opioids, alcohol and nicotine, can alter the levels of endocannabinoids in the brain. Recent studies show that release of endocannabinoids in the ventral tegmental area can modulate the reward-related effects of dopamine and might therefore be an important neurobiological mechanism underlying drug addiction. There is strong evidence that the endocannabinoid system is involved in drug-seeking behavior (especially behavior that is reinforced by drug-related cues), as well as in the mechanisms that underlie relapse to drug use. The cannabinoid CB1 antagonist/inverse agonist rimonabant has been shown to reduce the behavioral effects of stimuli associated with drugs of abuse, including nicotine, alcohol, cocaine, and marijuana. Thus, the endocannabinoid system represents a promising target for development of new treatments for drug addiction.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039293/

Prescribing cannabis for harm reduction

“Neuropathic pain affects between 5% and 10% of the US population and can be refractory to treatment. Opioids may be recommended as a second-line pharmacotherapy but have risks including overdose and death. Cannabis has been shown to be effective for treating nerve pain without the risk of fatal poisoning. The author suggests that physicians who treat neuropathic pain with opioids should evaluate their patients for a trial of cannabis and prescribe it when appropriate prior to using opioids. This harm reduction strategy may reduce the morbidity and mortality rates associated with prescription pain medications.”

“Medicine relies upon the principle of, “First, do no harm,” and one might supplement the axiom to read – “First, do no harm, and second, reduce all the harm you can.” “Harm reduction” or “harm minimization” can be defined in the broadest sense as strategies designed to reduce risk or harm. Those harmed may include the individual, others impacted by the harmed person, and society. The substitution of a safer drug for one that is more dangerous is considered harm reduction. Specific examples of HR include prescribing methadone or buprenorphine to replace heroin, prescribing nicotine patches to be used instead of smoking tobacco, and prescribing intranasal naloxone to patients on opioid therapy to be utilized in case of overdose. Substituting cannabis for prescribed opioids may be considered a harm reduction strategy.”

“Under the Federal Controlled Substance Act “marihuana” is illegal and classified as a schedule I substance-meaning it has a high potential for abuse and no accepted medical use. However, sixteen states and the District of Columbia have legalized cannabis for medicinal use and these include Alaska, Arizona, California, Colorado, Delaware, Hawaii, Maine, Michigan, Montana, Nevada, New Jersey, New Mexico, Oregon, Rhode Island, Vermont, and Washington. Each state law differs but all allow physicians to “authorize” or “recommend” cannabis for specific ailments. This “recommendation” affords legal protections for patients to obtain and use medicinal cannabis, and may be considered the “prescription.””

“Cannabis (Cannabis sativa) and the opium poppy (Papaver somniferum) are both ancient plants that have been used medicinally for thousands of years. The natural and synthetic derivatives of opium, including morphine, are called “opioids.”  “Cannabinoids” is the term for a class of compounds within cannabis of which delta-9-tetrahydrocannabinol (THC) is the most familiar. Besides THC, approximately 100 other cannabinoids have been identified including one of special scientific interest called “cannabidiol” (CBD). The human body produces both endogenous cannabinoids (endocannabinoids) and opioids (endorphins) and contains specific receptors for these substances. There is an extensive literature on opioids but far less on cannabis/cannabinoids (CC).”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295721/

Cannabis as an adjunct to or substitute for opiates in the treatment of chronic pain.

Abstract

“There is a growing body of evidence to support the use of medical cannabis as an adjunct to or substitute for prescription opiates in the treatment of chronic pain. When used in conjunction with opiates, cannabinoids lead to a greater cumulative relief of pain, resulting in a reduction in the use of opiates (and associated side-effects) by patients in a clinical setting. Additionally, cannabinoids can prevent the development of tolerance to and withdrawal from opiates, and can even rekindle opiate analgesia after a prior dosage has become ineffective. Novel research suggests that cannabis may be useful in the treatment of problematic substance use. These findings suggest that increasing safe access to medical cannabis may reduce the personal and social harms associated with addiction, particularly in relation to the growing problematic use of pharmaceutical opiates. Despite a lack of regulatory oversight by federal governments in North America, community-based medical cannabis dispensaries have proven successful at supplying patients with a safe source of cannabis within an environment conducive to healing, and may be reducing the problematic use of pharmaceutical opiates and other potentially harmful substances in their communities.”

http://www.ncbi.nlm.nih.gov/pubmed/22880540

Cannabidiol for the treatment of cannabis withdrawal syndrome: a case report.

Abstract

“What is known and Objective:  Cannabis withdrawal in heavy users is commonly followed by increased anxiety, insomnia, loss of appetite, migraine, irritability, restlessness and other physical and psychological signs. Tolerance to cannabis and cannabis withdrawal symptoms are believed to be the result of the desensitization of CB(1) receptors by THC. Case summary:  This report describes the case of a 19-year-old woman with cannabis withdrawal syndrome treated with cannabidiol (CBD) for 10 days. Daily symptom assessments demonstrated the absence of significant withdrawal, anxiety and dissociative symptoms during the treatment. What is new and Conclusion:  CBD can be effective for the treatment of cannabis withdrawal syndrome.”

http://www.ncbi.nlm.nih.gov/pubmed/23095052

The endocannabinoid system as a target for the treatment of cannabis dependence

“Cannabinoid replacement therapy and CB1 receptor antagonism are two potential treatments for cannabis dependence that are currently under investigation. However, abuse liability and adverse side effects may limit the scope of each of these approaches. A potential alternative stems from the recognition that (i) frequent cannabis use may cause an adaptive downregulation of brain endocannabinoid signaling, and (ii) that genetic traits that favor hyperactivity of the endocannabinoid system in humans may decrease susceptibility to cannabis dependence. These findings suggest in turn that pharmacological agents that elevate brain levels of the endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol (2-AG), might alleviate cannabis withdrawal and dependence. One such agent, the fatty-acid amide hydrolase (FAAH) inhibitor URB597, selectively increases anandamide levels in the brain of rodents and primates. Preclinical studies show that URB597 produces analgesic, anxiolytic-like and antidepressant-like effects in rodents, which are not accompanied by overt signs of abuse liability. In this article, we review evidence suggesting that (i) cannabis influences brain endocannabinoid signaling; and (ii) FAAH inhibitors such as URB597 might offer a possible therapeutic avenue for the treatment of cannabis withdrawal.”

“Direct modulation of CB1receptors as a treatment for cannabis dependence”

“Even though, as we have seen above, direct activation of CB1 receptors may yield variable behavioral responses, low-dosage oral Δ9-THC has shown promise in the management of human cannabis withdrawal. The rationale for this approach is that controlled replacement of Δ9-THC for smoked cannabis may reduce the severity of withdrawal symptoms and allow a dependent individual to remain abstinent. Additionally, given that dependent subjects are experienced with cannabis, and Δ9-THC is administered at low doses, administration of the latter is unlikely to result in the anxiety responses observed with inexperienced users or high dosages. Consistent with this idea, two independent clinical studies have shown that low-dose oral Δ9-THC attenuates withdrawal symptom scores and is minimally intoxicating in non-treatment seeking daily cannabis users.””

“Several therapeutic modalities are currently being considered to treat cannabis dependence, including activation or deactivation of CB1receptors. While these stategies show promise in measures of cannabis withdrawal and abstinence, they may also create problems of abuse liability or adverse emotional effects. An additional approach might be to enhance endogenous anandamide signaling using agents that attenuate the deactivation of this endocannabinoid transmitter.”

“Increasing anandamide signaling with deactivation inhibitors, such as the FAAH blocker URB597, potentiates stress coping behaviors in animals, indicating a role for anandamide in physiopathological context of stress-related responses. Similarly, elevation of anandamide in specific brain regions opposes the anhedonic effects of stress and promotes normal positive responses to pleasurable stimuli in rodents. It is reasonable to hypothesize that these effects could act to blunt the negative affect and stress, which is common during cannabis withdrawal, thus allowing cannabis dependent individuals to successfully abstain from drug use.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2647947/

The endogenous cannabinoid system and the treatment of marijuana dependence.

Abstract

“The active principle of marijuana, Delta9-tetrahydrocannabinol (Delta9-THC), exerts its pharmacological effects by binding to selective receptors present on the membranes of neurons and other cells. These cannabinoid receptors are normally engaged by a family of lipid mediators, called endocannabinoids, which are thought to participate in the regulation of a diversity of brain functions, including pain, mood, appetite and memory. Marijuana use may lead to adaptive changes in endocannabinoid signaling, and these changes might contribute to effects of marijuana as well as to the establishment of marijuana dependence. In the present article, I outline current views on how endocannabinoid substances are produced, released, and deactivated in the brain. In addition, I review recent progress on the development of pharmacological agents that interfere with endocannabinoid deactivation and discuss their potential utility in the treatment of marijuana dependence and other aspects of drug abuse.”

http://www.ncbi.nlm.nih.gov/pubmed/15464150