“The opioid and cannabinoid receptor systems are inextricably linked-overlapping at the anatomical, functional and behavioural levels. Preclinical studies have reported that cannabinoid and opioid agonists produce synergistic antinociceptive effects. Still, there are no experimental data on the effects of cannabinoid agonists among humans who receive opioid agonist therapies for opioid use disorder (OUD). We conducted an experimental study to investigate the acute effects of the delta-9-tetrahydrocannabinol (THC) among persons receiving methadone therapy for OUD. Using a within-subject, crossover, human laboratory design, 25 persons on methadone therapy for OUD (24% women) were randomly assigned to receive single oral doses of THC (10 or 20 mg, administered as dronabinol) or placebo, during three separate 5-h test sessions. Measures of experimental and self-reported pain sensitivity, abuse potential, cognitive performance and physiological effects were collected. Mixed-effects models examined the main effects of THC dose and interactions between THC (10 and 20 mg) and methadone doses (low-dose methadone defined as <90 mg/day; high dose defined as >90 mg/day). Results demonstrated that, for self-reported rather than experimental pain sensitivity measures, 10 mg THC provided greater relief than 20 mg THC, with no substantial evidence of abuse potential, and inconsistent dose-dependent cognitive adverse effects. There was no indication of any interaction between THC and methadone doses. Collectively, these results provide valuable insights for future studies aiming to evaluate the risk-benefit profile of cannabinoids to relieve pain among individuals receiving opioid agonist therapy for OUD, a timely endeavour amidst the opioid crisis.”
Category Archives: Addiction
An answered call for aid? Cannabinoid clinical framework for the opioid epidemic
“Background: The opioid crisis continues in full force, as physicians and caregivers are desperate for resources to help patients with opioid use and chronic pain disorders find safer and more accessible non-opioid tools.
Main body: The purpose of this article is to review the current state of the opioid epidemic; the shifting picture of cannabinoids; and the research, policy, and current events that make opioid risk reduction an urgent public health challenge. The provided table contains an evidence-based clinical framework for the utilization of cannabinoids to treat patients with chronic pain who are dependent on opioids, seeking alternatives to opioids, and tapering opioids.
Conclusion: Based on a comprehensive review of the literature and epidemiological evidence to date, cannabinoids stand to be one of the most interesting, safe, and accessible tools available to attenuate the devastation resulting from the misuse and abuse of opioid narcotics. Considering the urgency of the opioid epidemic and broadening of cannabinoid accessibility amidst absent prescribing guidelines, the authors recommend use of this clinical framework in the contexts of both clinical research continuity and patient care.”
https://pubmed.ncbi.nlm.nih.gov/37587466/
“Resistance to cannabis-based medicines for the opioid epidemic may have many origins, particularly the stigma associated with recreational cannabis use. That said, the evidence to date suggests that it is time for a sea change in the clinical approach to cannabis for pain management and OUD. Throughout the history of science and clinical medicine, there have been transformative changes that were initially considered heretical: hand hygiene as a means to prevent infection prior to germ theory, therapy for H. pylori to combat peptic ulcer disease, and even the genetic basis of cancer were all dismissed by their era’s established medical communities. Similarly, we face great resistance to the implementation of CBD and other cannabinoids for treatment-resistant chronic illnesses, despite the compelling evidence, strong overall safety profile, and urgent need. Many of our patients have already begun their own self-guided journey into pain management with cannabinoids and the burden is now on providers to consolidate the information available, conduct more rigorous research, form best practices, and implement guidelines that will inform both the field and those we care for without stigma.”
https://harmreductionjournal.biomedcentral.com/articles/10.1186/s12954-023-00842-6
Cannabis Versus Opioids for Pain
“In the human body, pain is an inherent alarm system that activates when there is actual or potential damage, directing an individual’s attention toward the issue. Pain is a frequently cited reason for seeking healthcare or medical assistance. Pain encompasses various elements, including nociception, the perception of pain, suffering, and pain behaviors. Although pain is a fundamental mechanism, it can become burdensome when it persists for an extended period, leading to suffering and pain-related behaviors. Chronic and unrelenting pain can cause psychological, physical, and emotional distress, adding further strain to individuals.
The search for an ideal pain relief medication has been an ongoing endeavor since ancient times, as certain types of pain still lack definitive treatment options. Several strategies have been developed to address intractable pain that does not respond to nonsteroidal anti-inflammatory drugs (NSAIDs), with opioids being the mainstay in many pain management protocols. In recent years, there has been growing and promising evidence suggesting the potential effectiveness of cannabinoids in the management of chronic pain.”
Cannabis use may attenuate neurocognitive performance deficits resulting from methamphetamine use disorder
“Objective: Methamphetamine and cannabis are two widely used, and frequently co-used, substances with possibly opposing effects on the central nervous system. Evidence of neurocognitive deficits related to use is robust for methamphetamine and mixed for cannabis. Findings regarding their combined use are inconclusive. We aimed to compare neurocognitive performance in people with lifetime cannabis or methamphetamine use disorder diagnoses, or both, relative to people without substance use disorders.
Method: 423 (71.9% male, aged 44.6 ± 14.2 years) participants, stratified by presence or absence of lifetime methamphetamine (M-/M+) and/or cannabis (C-/C+) DSM-IV abuse/dependence, completed a comprehensive neuropsychological, substance use, and psychiatric assessment. Neurocognitive domain T-scores and impairment rates were examined using multiple linear and binomial regression, respectively, controlling for covariates that may impact cognition.
Results: Globally, M+C+ performed worse than M-C- but better than M+C-. M+C+ outperformed M+C- on measures of verbal fluency, information processing speed, learning, memory, and working memory. M-C+ did not display lower performance than M-C- globally or on any domain measures, and M-C+ even performed better than M-C- on measures of learning, memory, and working memory.
Conclusions: Our findings are consistent with prior work showing that methamphetamine use confers risk for worse neurocognitive outcomes, and that cannabis use does not appear to exacerbate and may even reduce this risk. People with a history of cannabis use disorders performed similarly to our nonsubstance using comparison group and outperformed them in some domains. These findings warrant further investigation as to whether cannabis use may ameliorate methamphetamine neurotoxicity.”
Cannabis use to manage opioid cravings among people who use unregulated opioids during a drug toxicity crisis
“Background: Accumulating evidence has indicated that cannabis substitution is often used as a harm reduction strategy among people who use unregulated opioids (PWUO) and people living with chronic pain. We sought to investigate the association between cannabis use to manage opioid cravings and self-reported changes in opioid use among structurally marginalized PWUO.
Methods: The data were collected from a cross-sectional questionnaire administered to PWUO in Vancouver, Canada. Binary logistic regression was used to analyze the association between cannabis use to manage opioid cravings and self-reported changes in unregulated opioid use.
Results: A total of 205 people who use cannabis and opioids were enrolled in the present study from December 2019 to November 2021. Cannabis use to manage opioid cravings was reported by 118 (57.6%) participants. In the multivariable analysis, cannabis use to manage opioid cravings (adjusted Odds Ratio [aOR] = 2.13, 95% confidence interval [CI]: 1.07, 4.27) was significantly associated with self-reported reductions in opioid use. In the sub-analyses of pain, cannabis use to manage opioid cravings was only associated with self-assessed reductions in opioid use among people living with moderate to severe pain (aOR = 4.44, 95% CI: 1.52, 12.97). In the sub-analyses of males and females, cannabis use to manage opioid cravings was only associated with self-assessed reductions in opioid use among females (aOR = 8.19, 95% CI: 1.20, 55.81).
Conclusions: These findings indicate that cannabis use to manage opioid cravings is a prevalent motivation for cannabis use among PWUO and is associated with self-assessed reductions in opioid use during periods of cannabis use. Increasing the accessibility of cannabis products for therapeutic use may be a useful supplementary strategy to mitigate exposure to unregulated opioids and associated harm during the ongoing drug toxicity crisis.”
https://pubmed.ncbi.nlm.nih.gov/37481875/
https://www.sciencedirect.com/science/article/abs/pii/S0955395923001603?via%3Dihub
Offering an Alternative to Persons with Chronic Pain: How Access to Cannabis May Provide an Off-Ramp from Undesired Prescription Opioid Use
“Background: Chronic pain (CP) is experienced by as many as 50 million Americans and can negatively impact physical and mental health. Prescribing opioids is the most common approach to address moderate to severe CP though these potent analgesics are associated with a significant number of side effects. One alternative some Americans are turning to for CP management is cannabis. In addition to serving as an alternative, many individuals with CP use cannabis in addition to using prescription opioids. This study examined individuals with CP who enrolled in the state of Illinois’ opioid diversion program, the Opioid Alternative Pilot Program (OAPP), which offers individuals aged 21 and older a separate pathway to access medical cannabis if they have or could receive a prescription for opioids as certified by a licensed physician.
Methods: Cross-sectional survey data were collected from 450 participants. We described participants and compared those who use only cannabis with those who use cannabis and opioids.
Results: While 16% of the respondents were cannabis-only users, 84% of the respondents were co-users of opioids and cannabis. Both groups considered opioid use risky (100% cannabis-only, 89% co-users,). The majority (73%) of respondents sought to completely stop or never start using opioids for CP. Cannabis-only users reported lower levels of pain compared to co-users. Co-users (85%) were more likely to have their routine provider as a cannabis certifying physician than cannabis-only users (69%).
Conclusion: With increasing clinical evidence, legalization and acceptance, researchers should continue to examine how cannabis may be a viable alternative to reduce the risk of prescription opioid side effects, misuse, or dependence. Our findings also inform health care providers and state policymakers who increasingly are being asked to consider how cannabis may reduce the potential for harmful outcomes among persons with CP who use prescription opioids.”
https://pubmed.ncbi.nlm.nih.gov/37484046/
https://publications.sciences.ucf.edu/cannabis/index.php/Cannabis/article/view/125
Perceived Effectiveness of Medical Cannabis Among Adults with Chronic Pain: Findings from Interview Data in a Three-Month Pilot Study
“Objectives: Patient-reported outcomes are critical to evaluate the effectiveness of medical cannabis as an alternative treatment for chronic pain. This study examined the perceived effectiveness of medical cannabis for chronic pain management among middle-aged and older adults newly initiating medical cannabis.
Methods: Interview data from participants in a three-month pilot study were analyzed to assess the perceived effectiveness of medical cannabis on chronic pain and related outcomes. The interview was conducted after approximately one month of usage and responses were analyzed using the RADaR (Rigorous and Accelerated Data Reduction) technique.
Results: 51 adults initiating medical cannabis for chronic pain were interviewed (24 women, 27 men, mean age 54.4, SD = 12.0), with the majority (n=41) identifying as Non-Hispanic White followed by Non-Hispanic Black (n=7), Multi-racial (2), Hispanic White (1). Most study participants (62.7%) reported MC being overall effective. Common benefits included reduced pain intensity, anxiety, and dependency on pain and psychiatric medications. Improvements in physical functioning, sleep quality, and mood were reported. Common challenges included difficulty finding a suitable product or dose, experiencing side effects such as ‘undesired high’, ‘stomach issues’, and a limited ‘threshold of pain’ treatable by the product.
Discussion: Findings suggest most participants perceived medical cannabis to be overall effective for chronic pain management. Participants reported improved physical and mental functioning and reduced use of pain and psychiatric medications. Future research systematically assessing side effects, dosage and mode of consumption is needed to further evaluate the outcomes among adults initiating medical cannabis.”
https://pubmed.ncbi.nlm.nih.gov/37484052/
https://publications.sciences.ucf.edu/cannabis/index.php/Cannabis/article/view/149
Cannabis use is associated with decreased opioid prescription fulfillment following single level anterior cervical discectomy and fusion (ACDF)
“Background: Recently, there has been increasing legalization of marijuana within the United States, however data are mixed with respect to its efficacy in treating acute pain. Our goal was to identify a difference in opioid utilization in patients with known cannabis use before anterior cervical discectomy and fusion (ACDF) compared with those that report no cannabis use.
Methods: This study was a retrospective case-control design using PearlDiver. Patients who underwent a single level ACDF between January 2010 and October 2020, were included. Patients were placed in the study group if they had a previous diagnosis of cannabis use, dependence, or abuse. Patients were excluded if they were under the age of 18 or if they had filled an opioid prescription within 3 months of their procedure. A control group was then created using a propensity score match on age, gender, and Charleston comorbidity index (CCI), and had no diagnosis of cannabis use. The primary outcome was the number of morphine milliequivalents (MME) dispensed per prescription following surgery.
Results: A total of 1,339 patients were included in each group. The number of patients filling prescriptions was lower in the cannabis group than in the control group at 3 days postoperatively (p<.001). The average total MME per day as prescribed was lower in the cannabis group than the control group at 60 days post-op (48.5 vs. 59.4, respectively; p=.018).
Conclusions: Patients who had a previous diagnosis of cannabis use, dependence or abuse filled fewer opioid prescriptions postoperatively (at 3 days postoperatively) and required lower doses (reduced average daily MME, at 60 days postoperatively) when compared with the control group.”
https://pubmed.ncbi.nlm.nih.gov/37440986/
“In summary, patients who were known to use cannabis filled fewer opioid prescriptions following ACDF procedures and were prescribed lower daily doses than the control group, suggesting that cannabis use may reduce opioid requirements in this population.”
https://www.nassopenaccess.org/article/S2666-5484(23)00028-8/fulltext
The therapeutic potential of purified cannabidiol
“The use of cannabidiol (CBD) for therapeutic purposes is receiving considerable attention, with speculation that CBD can be useful in a wide range of conditions. Only one product, a purified form of plant-derived CBD in solution (Epidiolex), is approved for the treatment of seizures in patients with Lennox-Gastaut syndrome, Dravet syndrome, or tuberous sclerosis complex. Appraisal of the therapeutic evidence base for CBD is complicated by the fact that CBD products sometimes have additional phytochemicals (like tetrahydrocannabinol (THC)) present, which can make the identification of the active pharmaceutical ingredient (API) in positive studies difficult. The aim of the present review is to critically review clinical studies using purified CBD products only, in order to establish the upcoming indications for which purified CBD might be beneficial.
The areas in which there is the most clinical evidence to support the use of CBD are in the treatment of anxiety (positive data in 7 uncontrolled studies and 17 randomised controlled trials (RCTs)), psychosis and schizophrenia (positive data in 1 uncontrolled study and 8 RCTs), PTSD (positive data in 2 uncontrolled studies and 4 RCTs) and substance abuse (positive data in 2 uncontrolled studies and 3 RCTs). Seven uncontrolled studies support the use of CBD to improve sleep quality, but this has only been verified in one small RCT. Limited evidence supports the use of CBD for the treatment of Parkinson’s (3 positive uncontrolled studies and 2 positive RCTs), autism (3 positive RCTs), smoking cessation (2 positive RCTs), graft-versus-host disease and intestinal permeability (1 positive RCT each). Current RCT evidence does not support the use of purified oral CBD in pain (at least as an acute analgesic) or for the treatment of COVID symptoms, cancer, Huntington’s or type 2 diabetes.
In conclusion, published clinical evidence does support the use of purified CBD in multiple indications beyond epilepsy. However, the evidence base is limited by the number of trials only investigating the acute effects of CBD, testing CBD in healthy volunteers, or in very small patient numbers. Large confirmatory phase 3 trials are required in all indications.”
https://pubmed.ncbi.nlm.nih.gov/37312194/
https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-023-00186-9
Do tobacco and cannabis use and co-use predict lung function: A longitudinal study

“Background: Use of tobacco and cannabis is common and has been reported to predict lung function. Less is known about co-use of tobacco and cannabis and their impact on changes in lung function to early adulthood.
Research question: The study examines whether cigarette smoking or cannabis use and co-use are each associated with lung function in a population sample of young adults.
Study design and methods: Data are from a prospective cohort study of cigarette smoking, cannabis use and co-use at 21 and 30 years of age and lung function (FVC, FEV1, FEV1/FVC) measured at 30 years. Lung function results are transformed using Global Lung Function Formulae. Subjects are the children of pregnant women who were recruited into the cohort study over the period 1981-3. Respondents were administered a spirometry assessment at 21 and 30 years of age. These respondents completed a smoking and cannabis use questionnaire at 21- and 30-year follow-ups.
Results: Cigarette smoking (with or without cannabis use) is associated with reduced airflow. There is no consistent association between cannabis use and measures of lung function. The co-use of tobacco and cannabis appears to entail no additional risk to lung function beyond the risks associated with tobacco use alone.
Interpretation: Persistent cigarette smoking is associated with reduced airflow even in young adults. Cannabis use does not appear to be related to lung function even after years of use.”
https://pubmed.ncbi.nlm.nih.gov/36682602/
“•Cigarette smoking and cannabis use and co-use are risk factors for impaired lung function.
•By 30 years, those who have smoked cigarettes since adolescence already show evidence of impairment of lung function.
•By 30 years, those who used cannabis since the adolescent period do not appear to have evidence of impaired lung function.
•Co-use of tobacco and cannabis does not appear to predict lung function beyond the effects of tobacco use alone.”
https://www.resmedjournal.com/article/S0954-6111(23)00012-4/fulltext