Cannabidiol – A phytocannabinoid that widely affects sphingolipid metabolism under conditions of brain insulin resistance

Biomedicine & Pharmacotherapy“Obesity-related insulin resistance (IR) and attenuated brain insulin signaling are significant risk factors for neurodegenerative disorders, e.g., Alzheimer’s disease. IR and type 2 diabetes correlate with an increased concentration of sphingolipids, a class of lipids that play an essential structural role in cellular membranes and cell signaling pathways.

Cannabidiol (CBD) is a nonpsychoactive constituent of Cannabis sativa plant that interacts with the endocannabinoidome. Despite known positive effects of CBD on improvement in diabetes and its aftermath, e.g., anti-inflammatory and anti-oxidant effects, there are no studies evaluating the effect of phytocannabinoids on the brain insulin resistance and sphingolipid metabolism. Our experiment was carried out on Wistar rats that received a high-fat diet and/or intraperitoneal CBD injections.

In our study, we indicated inhibition of de novo synthesis and salvage pathways, which resulted in significant changes in the concentration of sphingolipids, e.g., ceramide and sphingomyelin. Furthermore, we observed reduced brain IR and decreased tau protein phosphorylation what might be protective against neuropathologies development.

We believe that our research will concern a new possible therapeutic approach with Cannabis -plant derived compounds and within a few years, cannabinoids would be considered as prominent substances for targeting both metabolic and neurodegenerative pathologies.”

https://pubmed.ncbi.nlm.nih.gov/34435590/

“CBD might be an essential factor that leads to the reduction of brain IR. Thus, we believe that our research will concern a new possible therapeutic approach with a Cannabis-plant derived compounds and within a few years, those substances would be considered as prominent compounds for targeting both metabolic and neurodegenerative pathologies.”

https://www.sciencedirect.com/science/article/pii/S0753332221008404?via%3Dihub

Medical cannabinoids for treatment of neuropsychiatric symptoms in dementia: systematic review

SciELO - Trends in Psychiatry and Psychotherapy“Introduction: Neuropsychiatric symptoms are an integral component of the natural history of dementia, occurring from prodromal to advanced stages of the disease process and leading to increased burden and morbidity. Clinical presentations are pleomorphic, and clinical management often requires combination of pharmacological and non-pharmacological interventions. However, limited efficacy and a non-negligible incidence of adverse events of psychotropic drugs reinforce the need for novel therapeutic options.

Aims: To review the evidence supporting the use of medical cannabinoids for the treatment of neuropsychiatric symptoms of dementia (NPS).

Results: Fifteen publications with original clinical data were retrieved, being 5 controlled clinical trials, 3 open-label/observational studies, and 7 case reports. Most studies indicated that the use of medical cannabinoids engendered favorable outcomes for the treatment of neuropsychiatric symptoms related to moderate and advanced stages of dementia, particularly agitation, aggressive behavior and sleep and sexual disinhibition.

Conclusion: Medical cannabinoids represent a promising pharmacological approach for the treatment of NPS, with preliminary evidence of benefit at least in moderate to severe dementia. Controlled trials with longitudinal design and larger samples are required to examine the long-term efficacy of these drugs in different types and stages of dementia, in addition to their adverse events and risk of interactions with other drugs. Many pharmacological details are yet to be determined, such as dosing, treatment duration and concentrations of active compounds (e.g., CBD/THC ratio) in commercial preparations of medical cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/34374269/

Cannabidiol in Neurological and Neoplastic Diseases: Latest Developments on the Molecular Mechanism of Action

ijms-logo“As the major nonpsychotropic constituent of Cannabis sativa, cannabidiol (CBD) is regarded as one of the most promising therapeutic agents due to its proven effectiveness in clinical trials for many human diseases. Due to the urgent need for more efficient pharmacological treatments for several chronic diseases, in this review, we discuss the potential beneficial effects of CBD for Alzheimer’s disease, epilepsy, multiple sclerosis, and neurological cancers. Due to its wide range of pharmacological activities (e.g., antioxidant, anti-inflammatory, and neuroprotective properties), CBD is considered a multimodal drug for the treatment of a range of neurodegenerative disorders, and various cancer types, including neoplasms of the neural system. The different mechanisms of action of CBD are here disclosed, together with recent progress in the use of this cannabis-derived constituent as a new therapeutic approach.”

https://pubmed.ncbi.nlm.nih.gov/33919010/

https://www.mdpi.com/1422-0067/22/9/4294

Multi-Target Effects of the Cannabinoid CP55940 on Familial Alzheimer’s Disease PSEN1 E280A Cholinergic-Like Neurons: Role of CB1 Receptor

Get IOS Press NewsAlzheimer’s disease (AD) is characterized by structural damage, death, and functional disruption of cholinergic neurons (ChNs) as a result of intracellular amyloid-β (Aβ) aggregation, extracellular neuritic plaques, and hyperphosphorylation of protein tau (p-Tau) overtime.

Objective: To evaluate the effect of the synthetic cannabinoid CP55940 (CP) on PSEN1 E280A cholinergic-like nerve cells (PSEN1 ChLNs)-a natural model of familial AD.

Results: CP in the presence of both inverse agonists (hereafter SR) almost completely inhibits the aggregation of intracellular sAβPPβf and p-Tau, increases ΔΨm, decreases oxidation of DJ-1Cys106-SH residue, and blocks the activation of c-Jun, p53, PUMA, and caspase-3 independently of CB1Rs signaling in mutant ChLNs. CP also inhibits the generation of reactive oxygen species partially dependent on CB1Rs. Although CP reduced extracellular Aβ 42, it was unable to reverse the Ca2 + influx dysregulation as a response to acetylcholine stimuli in mutant ChLNs. Exposure to anti-Aβ antibody 6E10 (1:300) in the absence or presence of SR plus CP completely recovered transient [Ca2 +]i signal as a response to acetylcholine in mutant ChLNs.

Conclusion: Taken together our findings suggest that the combination of cannabinoids, CB1Rs inverse agonists, and anti-Aβ antibodies might be a promising therapeutic approach for the treatment of familial AD.”

https://pubmed.ncbi.nlm.nih.gov/33252082/

“It is therefore proposed that combinations of cannabinoids, anti-Aβ 42 antibodies (e.g., crenezumab), and CB1 inverse agonists might be a promising multi-target drugs for therapy in the early treatment of FAD PSEN 1 E280A ChLNs neurodegeneration.”

https://content.iospress.com/articles/journal-of-alzheimers-disease/jad201045

Cannabinoids in the management of frontotemporal dementia: a case series

 “Background: Frontotemporal dementia (FTD) is characterized by progressive deterioration in behaviors, executive function and/or language. The behavioral variant (Bv) is characterized by disinhibition and obsessive/compulsive behaviors. These symptoms are sometimes resistant to medications. This series examines patients suffering with treatment-resistant Bv-FTD who were prescribed cannabinoid and related compounds for other indications.

Case presentation: Three FTD cases from a dementia clinic were identified. These patients had disability due to behavior despite typical pharmacologic management. These patients were prescribed marijuana for comorbidities (anxiety, insomnia and pain). In all cases, use of cannabinoid products showed significant improvements in behavior and in the primary indication for prescription.

Conclusion: Review of these cases demonstrates potential for the use of cannabinoids in the management of treatment-resistant Bv-FTD.”

https://pubmed.ncbi.nlm.nih.gov/33190583/

“Frontotemporal dementia is a complicated and difficult disease that can be challenging to manage and often leads to significant burden on caregivers. Sometimes management of behavioral changes is difficult even with medications. In this case series, we report three cases of patients with behavior that was resistant to typical treatment who showed improvement in behavior when they were prescribed medical marijuana for other reason.”

https://www.futuremedicine.com/doi/10.2217/nmt-2020-0048

Emerging potential of cannabidiol in reversing proteinopathies

Ageing Research Reviews “The aberrant accumulation of disease-specific protein aggregates accompanying cognitive decline is a pathological hallmark of age-associated neurological disorders, also termed as proteinopathies, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and multiple sclerosis.

Along with oxidative stress and neuroinflammation, disruption in protein homeostasis (proteostasis), a network that constitutes protein surveillance system, plays a pivotal role in the pathobiology of these dementia disorders.

Cannabidiol, a non-psychotropic phytocannabinoid of Cannabis sativa, is known for its pleiotropic neuropharmacological effects on the central nervous system, including the ability to abate oxidative stress, neuroinflammation, and protein misfolding. Over the past years, compelling evidence has documented disease-modifying role of cannabidiol in various preclinical and clinical models of neurological disorders, suggesting the potential therapeutic implications of cannabidiol in these disorders.

Because of its putative role in the proteostasis network in particular, cannabidiol could be a potent modulator for reversing not only age-associated neurodegeneration but also other protein misfolding disorders. However, the current understanding is insufficient to underpin this proposition. In this review, we discuss the potentiality of cannabidiol as a pharmacological modulator of the proteostasis network, highlighting its neuroprotective and aggregates clearing roles in the neurodegenerative disorders.

We anticipate that the current effort will advance our knowledge on the implication of CBD in proteostasis network, opening up a new therapeutic window for ageing proteinopathies.”

https://pubmed.ncbi.nlm.nih.gov/33181336/

“Cannabidiol reduces oxidative stress and neuroinflammation of brain.”

https://www.sciencedirect.com/science/article/pii/S1568163720303445?via%3Dihub

Molecular Targets of Cannabidiol in Experimental Models of Neurological Disease

molecules-logo“Cannabidiol (CBD) is a non-psychoactive phytocannabinoid known for its beneficial effects including antioxidant and anti-inflammatory properties. Moreover, CBD is a compound with antidepressant, anxiolytic, anticonvulsant and antipsychotic effects. Thanks to all these properties, the interest of the scientific community for it has grown.

Indeed, CBD is a great candidate for the management of neurological diseases. The purpose of our review is to summarize the in vitro and in vivo studies published in the last 15 years that describe the biochemical and molecular mechanisms underlying the effects of CBD and its therapeutic application in neurological diseases.

CBD exerts its neuroprotective effects through three G protein coupled-receptors (adenosine receptor subtype 2A, serotonin receptor subtype 1A and G protein-coupled receptor 55), one ligand-gated ion channel (transient receptor potential vanilloid channel-1) and one nuclear factor (peroxisome proliferator-activated receptor γ). Moreover, the therapeutical properties of CBD are also due to GABAergic modulation.

In conclusion, CBD, through multi-target mechanisms, represents a valid therapeutic tool for the management of epilepsy, Alzheimer’s disease, multiple sclerosis and Parkinson’s disease.”

https://pubmed.ncbi.nlm.nih.gov/33171772/

https://www.mdpi.com/1420-3049/25/21/5186

The Effects of Cannabis Use on Cognitive Function in Healthy Aging: A Systematic Scoping Review

Archives of Clinical Neuropsychology“Background: Older adults (≥50 years) represent the fastest-growing population of people who use cannabis, potentially due to the increasing promotion of cannabis as medicine by dispensaries and cannabis websites. Given healthy aging and cannabis use are both associated with cognitive decline, it is important to establish the effects of cannabis on cognition in healthy aging.

Objective: This systematic scoping review used preferred reporting items for systematic reviews and meta-analyses guidelines to critically examine the extent of literature on this topic and highlight areas for future research.

Results: Six articles reported findings for older populations (three human and three rodent studies), highlighting the paucity of research in this area. Human studies revealed largely null results, likely due to several methodological limitations. Better-controlled rodent studies indicate that the relationship between ∆9-tetrahydrocannabinol (THC) and cognitive function in healthy aging depends on age and level of THC exposure. Extremely low doses of THC improved cognition in very old rodents. Somewhat higher chronic doses improved cognition in moderately aged rodents. No studies examined the effects of cannabidiol (CBD) or high-CBD cannabis on cognition.

Conclusions: This systematic scoping review provides crucial, timely direction for future research on this emerging issue. Future research that combines neuroimaging and cognitive assessment would serve to advance understanding of the effects of age and quantity of THC and CBD on cognition in healthy aging.”

https://pubmed.ncbi.nlm.nih.gov/33159510/

“THC; the main psychoactive cannabis compound; exerted pro-cognitive effects on memory and learning in older populations.”

https://academic.oup.com/acn/advance-article/doi/10.1093/arclin/acaa105/5960018

Cannabidiol (CBD) enhanced the hippocampal immune response and autophagy of APP/PS1 Alzheimer’s mice uncovered by RNA-seq

 Life Sciences“Alzheimer’s disease (AD) is a central nervous system disease characterized by dementia, which has now become a major threat to global health.

Cannabidiol (CBD) is a natural component extracted from the hemp plant and exhibits multiple mechanisms to improve the pathological process of AD in vitro and in vivo. However, its underlying molecular mechanism is still unclear.

This study attempts to reveal its common mechanism through transcriptome sequence.

This study illustrated that CBD may improve the pathological process of AD by enhancing immune system response and autophagy pathway.”

https://pubmed.ncbi.nlm.nih.gov/33096116/

https://www.sciencedirect.com/science/article/abs/pii/S0024320520313771?via%3Dihub

Attenuation of Oxidative Stress by Cannabinoids and Cannabis Extracts in Differentiated Neuronal Cells

pharmaceuticals-logo“In this proof-of-concept study, the antioxidant activity of phytocannabinoids, namely cannabidiol (CBD) and Δ9- tetrahydrocannabinol (THC), were investigated using an in vitro system of differentiated human neuronal SY-SH5Y cells.

We showed that THC had a high potency to combat oxidative stress in both in vitro models, while CBD did not show a remarkable antioxidant activity. The cannabis extracts also exhibited a significant antioxidant activity, which depended on the ratio of the THC and CBD. However, our results did not suggest any antagonist effect of the CBD on the antioxidant activity of THC. The effect of cannabis extracts on the cell viability of differentiated human neuronal SY-SH5Y cells was also investigated, which emphasized the differences between the bioactivity of cannabis extracts due to their composition.

Our preliminary results demonstrated that cannabis extracts and phytocannabinoids have a promising potential as antioxidants, which can be further investigated to develop novel pharmaceuticals targeting oxidative stress therapy.”

https://pubmed.ncbi.nlm.nih.gov/33105840/

https://www.mdpi.com/1424-8247/13/11/328