GPR3, GPR6, and GPR12 as novel molecular targets: their biological functions and interaction with cannabidiol.

Image result for APS journal

“The G protein-coupled receptors 3, 6, and 12 (GPR3, GPR6, and GPR12) comprise a family of closely related orphan receptors with no confirmed endogenous ligands. These receptors are constitutively active and capable of signaling through G protein-mediated and non-G protein-mediated mechanisms. These orphan receptors have previously been reported to play important roles in many normal physiological functions and to be involved in a variety of pathological conditions.

Although they are orphans, GPR3, GPR6, and GPR12 are phylogenetically most closely related to the cannabinoid receptors. Using β-arrestin2 recruitment and cAMP accumulation assays, we recently found that the nonpsychoactive phytocannabinoid cannabidiol (CBD) is an inverse agonist for GPR3, GPR6, and GPR12.

This discovery highlights these orphan receptors as potential new molecular targets for CBD, provides novel mechanisms of action, and suggests new therapeutic uses of CBD for illnesses such as Alzheimer’s disease, Parkinson’s disease, cancer, and infertility. Furthermore, identification of CBD as a new inverse agonist for GPR3, GPR6, and GPR12 provides the initial chemical scaffolds upon which potent and efficacious agents acting on these receptors can be developed, with the goal of developing chemical tools for studying these orphan receptors and ultimately new therapeutic agents.”

https://www.ncbi.nlm.nih.gov/pubmed/29941868

https://www.nature.com/articles/s41401-018-0031-9

Endocannabinoid and Muscarinic Signaling Crosstalk in the 3xTg-AD Mouse Model of Alzheimer’s Disease.

 Image result for ios press

“The endocannabinoid system, which modulates emotional learning and memory through CB1 receptors, has been found to be deregulated in Alzheimer’s disease (AD).

AD is characterized by a progressive decline in memory associated with selective impairment of cholinergic neurotransmission. The functional interplay of endocannabinoid and muscarinic signaling was analyzed in seven-month-old 3xTg-AD mice following the evaluation of learning and memory of an aversive stimulus.

The subchronic (seven days) stimulation of the endocannabinoid system following repeated WIN55,212-2 (1 mg/kg) or JZL184 (8 mg/kg) administration induced a CB1 receptor downregulation and CB1-mediated signaling desensitization, normalizing acquisition latencies to control levels. However, the observed modulation of cholinergic neurotransmission in limbic areas did not modify learning and memory outcomes.

A CB1 receptor-mediated decrease of GABAergic tone in the basolateral amygdala may be controlling the limbic component of learning and memory in 3xTg-AD mice. CB1 receptor desensitization may be a plausible strategy to improve behavior alterations associated with genetic risk factors for developing AD.”

https://www.ncbi.nlm.nih.gov/pubmed/29865071

https://content.iospress.com/articles/journal-of-alzheimers-disease/jad180137

Cannabinoid Receptor 2-Deficiency Ameliorates Disease Symptoms in a Mouse Model with Alzheimer’s Disease-Like Pathology.

 Image result for ios press

“It is widely accepted that the endocannabinoid system (ECS) is a modulator of neuroinflammation associated with neurodegenerative disorders, including Alzheimer’s disease (AD).

Thus, expression of the cannabinoid receptor 2 (CB2) is induced in plaque-associated microglia and astrocytes in brain tissues from AD patients and in genetic mouse models expressing pathogenic variants of the amyloid precursor protein (APP).

However, the exact mechanism of CB2 signaling in this mouse model remains elusive, because the genetic deletion of CB2 and the pharmacological activation of CB2 both reduced neuroinflammation.

Here, we demonstrate that CB2 deletion also improved cognitive and learning deficits in APP/PS1*CB2-/- mice. This was accompanied by reduced neuronal loss and decreased plaque levels and coincided with increased expression of Aβ degrading enzymes. Interestingly, plaque-associated microglia in APP/PS1*CB2-/- mice showed a less activated morphology, while plaques were smaller and more condensed than in APP/PS1 mice.

Taken together, these results indicate a beneficial effect of CB2-deficiency in APP transgenic mice. CB2 appears to be part of a protective system that may be detrimental when engaged continuously.”

https://www.ncbi.nlm.nih.gov/pubmed/29865078

https://content.iospress.com/articles/journal-of-alzheimers-disease/jad180230

The biomedical challenge of neurodegenerative disorders: an opportunity for cannabinoid-based therapies to improve on the poor current therapeutic outcomes.

British Journal of Pharmacology banner

“At the beginning of the 21st century, the therapeutic management of neurodegenerative disorders remains a major biomedical challenge, particularly given the worldwide aging of the population over the past 50 years that is expected to continue in the forthcoming years.

This review will focus on the promise of cannabinoid based therapies to address this challenge.

Such promise is based on the broad neuroprotective profile of cannabinoids, which may cooperate to combat excitotoxicity, oxidative stress, glia-driven inflammation and protein aggregation.

Such effects may be produced by the activity of cannabinoids through their canonical targets (e.g. cannabinoid receptors, endocannabinoid enzymes) but also, via non-canonical elements and activities in distinct cell types critical for cell survival or neuronal replacement (e.g. neurons, glia, neural precursor cells).

Ultimately, the therapeutic events driven by endocannabinoid signalling reflect the activity of an endogenous system that regulates the preservation, rescue, repair and replacement of neurons and glia.”

https://www.ncbi.nlm.nih.gov/pubmed/29856067

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14382

Cannabinoid CB2 receptors in the mouse brain: relevance for Alzheimer’s disease.

Image result for BMC journal of neuroinflammation

“Because of their low levels of expression and the inadequacy of current research tools, CB2 cannabinoid receptors (CB2R) have been difficult to study, particularly in the brain. This receptor is especially relevant in the context of neuroinflammation, so novel tools are needed to unveil its pathophysiological role(s).

METHODS:

We have generated a transgenic mouse model in which the expression of enhanced green fluorescent protein (EGFP) is under the control of the cnr2 gene promoter through the insertion of an Internal Ribosomal Entry Site followed by the EGFP coding region immediately 3′ of the cnr2 gene and crossed these mice with mice expressing five familial Alzheimer’s disease (AD) mutations (5xFAD).

RESULTS:

Expression of EGFP in control mice was below the level of detection in all regions of the central nervous system (CNS) that we examined. CB2R-dependent-EGFP expression was detected in the CNS of 3-month-old AD mice in areas of intense inflammation and amyloid deposition; expression was coincident with the appearance of plaques in the cortex, hippocampus, brain stem, and thalamus. The expression of EGFP increased as a function of plaque formation and subsequent microgliosis and was restricted to microglial cells located in close proximity to neuritic plaques. AD mice with CB2R deletion exhibited decreased neuritic plaques with no changes in IL1β expression.

CONCLUSIONS:

Using a novel reporter mouse line, we found no evidence for CB2R expression in the healthy CNS but clear up-regulation in the context of amyloid-triggered neuroinflammation. Data from CB2R null mice indicate that they play a complex role in the response to plaque formation.”

An overview of the cannabinoid type 2 receptor system and its therapeutic potential.

Image result for wolters kluwer

“This narrative review summarizes recent insights into the role of the cannabinoid type 2 (CB2) receptor as potential therapeutic target in neuropathic pain and neurodegenerative conditions.

RECENT FINDINGS:

The cannabinoid system continues to receive attention as a therapeutic target. The CB2 receptor is primarily expressed on glial cells only when there is active inflammation and appears to be devoid of undesired psychotropic effects or addiction liability. The CB2 receptor has been shown to have potential as a therapeutic target in models of diseases with limited or no currently approved therapies, such as neuropathic pain and neurodegenerative conditions such as Alzheimer’s disease.

SUMMARY:

The functional involvement of CB2 receptor in neuropathic pain and other neuroinflammatory diseases highlights the potential therapeutic role of drugs acting at the CB2 receptor.”

https://www.ncbi.nlm.nih.gov/pubmed/29794855

https://insights.ovid.com/crossref?an=00001503-900000000-98981

Is Cannabidiol a Promising Substance for New Drug Development? A Review of its Potential Therapeutic Applications.

Critical Reviews™ in Eukaryotic Gene Expression

“The pharmacological importance of cannabidiol (CBD) has been in study for several years.

CBD is the major nonpsychoactive constituent of plant Cannabis sativa and its administration is associated with reduced side effects.

Currently, CBD is undergoing a lot of research which suggests that it has no addictive effects, good safety profile and has exhibited powerful therapeutic potential in several vital areas.

It has wide spectrum of action because it acts through endocannabinoid receptors; CB1 and CB2 and it also acts on other receptors, such as GPR18, GPR55, GPR 119, 5HT1A, and TRPV2.

This indicates its therapeutic value for numerous medical conditions because of its neuroprotective and immunomodulatory properties.

Potential therapeutic applications of CBD include, analgesic, anti-inflammatory, anxiolytic, anti-arthritic, anti-depressant, anti-Alzheimer disease, anti-ischemic, neuroprotective, and anti-fibrotic.

More promising areas appear to include diabetes and cancer where CBD exhibits lesser side effects and more therapeutic benefits as compared to recent available medical therapies.

Hence, CBD is a promising substance for the development of new drug. However further research and clinical studies are required to explore its complete potential.”

Review of the neurological benefits of phytocannabinoids.

Logo of sni

“Numerous physical, psychological, and emotional benefits have been attributed to marijuana since its first reported use in 2,600 BC in a Chinese pharmacopoeia. The phytocannabinoids, cannabidiol (CBD), and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied extracts from cannabis sativa subspecies hemp and marijuana. CBD and Δ9-THC interact uniquely with the endocannabinoid system (ECS). Through direct and indirect actions, intrinsic endocannabinoids and plant-based phytocannabinoids modulate and influence a variety of physiological systems influenced by the ECS.

METHODS:

In 1980, Cunha et al. reported anticonvulsant benefits in 7/8 subjects with medically uncontrolled epilepsy using marijuana extracts in a phase I clinical trial. Since then neurological applications have been the major focus of renewed research using medical marijuana and phytocannabinoid extracts.

RESULTS:

Recent neurological uses include adjunctive treatment for malignant brain tumors, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, neuropathic pain, and the childhood seizure disorders Lennox-Gastaut and Dravet syndromes. In addition, psychiatric and mood disorders, such as schizophrenia, anxiety, depression, addiction, postconcussion syndrome, and posttraumatic stress disorders are being studied using phytocannabinoids.

CONCLUSIONS:

In this review we will provide animal and human research data on the current clinical neurological uses for CBD individually and in combination with Δ9-THC. We will emphasize the neuroprotective, antiinflammatory, and immunomodulatory benefits of phytocannabinoids and their applications in various clinical syndromes.”

https://www.ncbi.nlm.nih.gov/pubmed/29770251

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938896/

Activation of the Cannabinoid Type 2 Receptor by a Novel Indazole Derivative Normalizes the Survival Pattern of Lymphoblasts from Patients with Late-Onset Alzheimer’s Disease.

CNS Drugs

“Alzheimer’s disease is a multifactorial disorder for which there is no disease-modifying treatment yet.

CB2 receptors have emerged as a promising therapeutic target for Alzheimer’s disease because they are expressed in neuronal and glial cells and their activation has no psychoactive effects.

OBJECTIVE:

The aim of this study was to investigate whether activation of the CB2 receptor would restore the aberrant enhanced proliferative activity characteristic of immortalized lymphocytes from patients with late-onset Alzheimer’s disease. It is assumed that cell-cycle dysfunction occurs in both peripheral cells and neurons in patients with Alzheimer’s disease, contributing to the instigation of the disease.

METHODS:

Lymphoblastoid cell lines from patients with Alzheimer’s disease and age-matched control individuals were treated with a new, in-house-designed dual drug PGN33, which behaves as a CB2 agonist and butyrylcholinesterase inhibitor. We analyzed the effects of this compound on the rate of cell proliferation and levels of key regulatory proteins. In addition, we investigated the potential neuroprotective action of PGN33 in β-amyloid-treated neuronal cells.

RESULTS:

We report here that PGN33 normalized the increased proliferative activity of Alzheimer’s disease lymphoblasts. The compound blunted the calmodulin-dependent overactivation of the PI3K/Akt pathway, by restoring the cyclin-dependent kinase inhibitor p27 levels, which in turn reduced the activity of the cyclin-dependent kinase/pRb cascade. Moreover, this CB2 agonist prevented β-amyloid-induced cell death in neuronal cells.

CONCLUSION:

Our results suggest that the activation of CB2 receptors could be considered a useful therapeutic approach for Alzheimer’s disease.”

https://www.ncbi.nlm.nih.gov/pubmed/29736745

https://link.springer.com/article/10.1007%2Fs40263-018-0515-7

Prolonged Cannabidiol Treatment Effects on Hippocampal Subfield Volumes in Current Cannabis Users.

Cannabis and Cannabinoid Research cover image

“Chronic cannabis use is associated with neuroanatomical alterations in the hippocampus. While adverse impacts of cannabis use are generally attributed to Δ9-tetrahydrocannabinol, emerging naturalistic evidence suggests cannabidiol (CBD) is neuroprotective and may ameliorate brain harms associated with cannabis use, including protection from hippocampal volume loss. This study examined whether prolonged administration of CBD to regular cannabis users within the community could reverse or reduce the characteristic hippocampal harms associated with chronic cannabis use.

Results: No change was observed in left or right hippocampus as a whole. However, left subicular complex (parasubiculum, presubiculum, and subiculum) volume significantly increased from baseline to post-treatment (p=0.017 uncorrected) by 1.58% (Cohen’s d=0.63; 2.83% in parasubiculum). Heavy cannabis users demonstrated marked growth in the left subicular complex, predominantly within the presubiculum, and right cornu ammonis (CA)1 compared to lighter users. Associations between greater right subicular complex and total hippocampal volume and higher plasma CBD concentration were evident, particularly in heavy users.

Conclusions: Our findings suggest a restorative effect of CBD on the subicular and CA1 subfields in current cannabis users, especially those with greater lifetime exposure to cannabis. While replication is required in a larger, placebo-controlled trial, these findings support a protective role of CBD against brain structural harms conferred by chronic cannabis use. Furthermore, these outcomes suggest that CBD may be a useful adjunct in treatments for cannabis dependence and may be therapeutic for a range of clinical disorders characterized by hippocampal pathology (e.g., schizophrenia, Alzheimer’s disease, and major depressive disorder).”

https://www.ncbi.nlm.nih.gov/pubmed/29682609

“In conclusion, our findings are the first to demonstrate an ameliorating effect of CBD treatment upon brain structural harms characteristic of regular cannabis use. Furthermore, these results speak to the potential for CBD treatment to restore hippocampal pathology in a range of clinical populations (e.g., schizophrenia, Alzheimer’s disease, and major depressive disorder).”

https://www.liebertpub.com/doi/10.1089/can.2017.0047