Alleviation of Neuropathology by Inhibition of Monoacylglycerol Lipase in APP Transgenic Mice Lacking CB2 Receptors.

Molecular Neurobiology

“Inhibition of monoacylglycerol lipase (MAGL), the primary enzyme that hydrolyzes the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain, produces profound anti-inflammatory and neuroprotective effects and improves synaptic and cognitive functions in animal models of Alzheimer’s disease (AD). However, the molecular mechanisms underlying the beneficial effects produced by inhibition of 2-AG metabolism are still not clear.

The cannabinoid receptor type 2 (CB2R) has been thought to be a therapeutic target for AD. Here, we provide evidence, however, that CB2R does not play a role in ameliorating AD neuropathology produced by inactivation of MAGL in 5XFAD APP transgenic mice, an animal model of AD.

Our results suggest that CB2R is not required in ameliorating neuropathology and preventing cognitive decline by inhibition of 2-AG metabolism in AD model animals.”

Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids.

“The beta amyloid (Aβ) and other aggregating proteins in the brain increase with age and are frequently found within neurons. The mechanistic relationship between intracellular amyloid, aging and neurodegeneration is not, however, well understood.

We use a proteotoxicity model based upon the inducible expression of Aβ in a human central nervous system nerve cell line to characterize a distinct form of nerve cell death caused by intracellular Aβ. It is shown that intracellular Aβ initiates a toxic inflammatory response leading to the cell’s demise. Aβ induces the expression of multiple proinflammatory genes and an increase in both arachidonic acid and eicosanoids, including prostaglandins that are neuroprotective and leukotrienes that potentiate death.

Cannabinoids such as tetrahydrocannabinol stimulate the removal of intraneuronal Aβ, block the inflammatory response, and are protective.

Altogether these data show that there is a complex and likely autocatalytic inflammatory response within nerve cells caused by the accumulation of intracellular Aβ, and that this early form of proteotoxicity can be blocked by the activation of cannabinoid receptors.”

Deletion of Type-2 Cannabinoid Receptor Induces Alzheimer’s Disease-Like Tau Pathology and Memory Impairment Through AMPK/GSK3β Pathway.

Molecular Neurobiology

“Although several studies have shown that type-2 cannabinoid receptor (CB2R) is involved in Alzheimer’s disease (AD) pathology, the effects of CB2R on AD-like tau abnormal phosphorylation and its underlying mechanism remain unclear.

Herein, we employed the CB2R-/- mice as the animal model to explore roles of CB2R in regulating tau phosphorylation and brain function.

Taken together, our study indicated that deletion of CB2R induces behavior damage and AD-like pathological alternation via AMPK/GSK3β pathway. These findings proved that CB2R/AMPK/GSK3β pathway can be a promising new drug target for AD.”

Endocannabinoid System in Neurodegenerative Disorders.

Journal of Neurochemistry

“Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid (EC) system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs.”

https://www.ncbi.nlm.nih.gov/pubmed/28608560

http://onlinelibrary.wiley.com/doi/10.1111/jnc.14098/abstract

Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders.

Image result for frontiers in pharmacology

“Beneficial effects of cannabidiol (CBD) have been described for a wide range of psychiatric disorders, including anxiety, psychosis, and depression. The mechanisms responsible for these effects, however, are still poorly understood. Similar to clinical antidepressant or atypical antipsychotic drugs, recent findings clearly indicate that CBD, either acutely or repeatedly administered, induces plastic changes. For example, CBD attenuates the decrease in hippocampal neurogenesis and dendrite spines density induced by chronic stress and prevents microglia activation and the decrease in the number of parvalbumin-positive GABA neurons in a pharmacological model of schizophrenia. More recently, it was found that CBD modulates cell fate regulatory pathways such as autophagy and others critical pathways for neuronal survival in neurodegenerative experimental models, suggesting the potential benefit of CBD treatment for psychiatric/cognitive symptoms associated with neurodegeneration. These changes and their possible association with CBD beneficial effects in psychiatric disorders are reviewed here.”

https://www.ncbi.nlm.nih.gov/pubmed/28588483

http://journal.frontiersin.org/article/10.3389/fphar.2017.00269/full

GPR3 and GPR6, novel molecular targets for cannabidiol.

Cover image

“GPR3 and GPR6 are members of a family of constitutively active, Gs protein-coupled receptors. Previously, it has been reported that GPR3 is involved in Alzheimer’s disease whereas GPR6 plays potential roles in Parkinson’s disease.

GPR3 and GPR6 are considered orphan receptors because there are no confirmed endogenous agonists for them. However, GPR3 and GPR6 are phylogenetically related to the cannabinoid receptors.

In this study, the activities of endocannabinoids and phytocannabinoids were tested on GPR3 and GPR6 using a β-arrestin2 recruitment assay. Among the variety of cannabinoids tested, cannabidiol (CBD), the major non-psychoactive component of marijuana, significantly reduced β-arrestin2 recruitment to both GPR3 and GPR6. In addition, the inhibitory effects of CBD on β-arrestin2 recruitment were concentration-dependent for both GPR3 and GPR6, with a higher potency for GPR6.

These data show that CBD acts as an inverse agonist at both GPR3 and GPR6 receptors. These results demonstrate for the first time that both GPR3 and GPR6 are novel molecular targets for CBD.

Our discovery that CBD acts as a novel inverse agonist on both GPR3 and GPR6 indicates that some of the potential therapeutic effects of CBD (e.g. treatment of Alzheimer’s disease and Parkinson’s disease) may be mediated through these important receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/28571738

http://www.sciencedirect.com/science/article/pii/S0006291X17310744

Activation of CB2 receptor system restores cognitive capacity and hippocampal Sox2 expression in a transgenic mouse model of Alzheimer’s disease.

Cover image

“Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by neuroinflammation, extensive deposits of amyloid-β aggregates, and loss of memory and cognitive abilities. The brains of patients with AD show increased expression of cannabinoid receptor type 2 (CB2) receptors and glial markers. CB2 receptors act as a negative feedback regulator; when activated by a CB2agonist, they can help limit the extent of the neuroinflammatory response and the subsequent development of neuronal damage in the central nervous system. In a double transgenic APP/PS1 mice model of AD, we evaluated the effect of MDA7, a CB2 agonist, on several neuropathological conditions of AD including amyloid deposition, inflammatory reaction, Sox2 (sex-determining region Y-box 2) expression, and spatial memory. Activation of microglia CB2 receptors by MDA7 suppressed neuroinflammation, demonstrated by decreased immunosignal of Iba1 in the hippocampal CA1 and dentate gyrus (DG) areas, promoted clearance of amyloid plaques in the DG area, restored Sox2 expression, and promoted recovery of the neuronal synaptic plasticity in hippocampal CA1. In addition, treatment with MDA7 improved the behavioral performance in the Morris water maze in APP/PS1mice. Collectively, these findings suggest that MDA7 has a potential therapeutic effect in the setting of AD.”

https://www.ncbi.nlm.nih.gov/pubmed/28551012

http://www.sciencedirect.com/science/article/pii/S0014299917303758

Neuroprotection in oxidative stress-related neurodegenerative diseases: role of endocannabinoid system modulation.

Image result

“Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in process of neurodegeneration.

Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases.

Critical Issue: Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system (ECS; comprising of the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids and their synthetic and metabolizing enzymes) and various key inflammatory and redox-dependent processes.

FUTURE DIRECTIONS:

Targeting the ECS in order to modulate redox state-dependent cell death, and to decrease consequent or preceding inflammatory response holds therapeutic potential in multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer`s and Parkinson`s diseases, and multiple sclerosis, just to name a few, which will be discussed in this overview.”

A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice

Image result for nature medicine

“The balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging.

The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower. However, a direct link between endocannabinoid tone and aging symptoms has not been demonstrated.

Here we show that a low dose of Δ9-tetrahydrocannabinol (THC) reversed the age-related decline in cognitive performance of mice aged 12 and 18 months. This behavioral effect was accompanied by enhanced expression of synaptic marker proteins and increased hippocampal spine density.

THC treatment restored hippocampal gene transcription patterns such that the expression profiles of THC-treated mice aged 12 months closely resembled those of THC-free animals aged 2 months. The transcriptional effects of THC were critically dependent on glutamatergic CB1 receptors and histone acetylation, as their inhibition blocked the beneficial effects of THC.

Thus, restoration of CB1 signaling in old individuals could be an effective strategy to treat age-related cognitive impairments.”

https://www.ncbi.nlm.nih.gov/pubmed/28481360

https://www.nature.com/nm/journal/vaop/ncurrent/full/nm.4311.html

“CAN MARIJUANA RESTORE MEMORY? NEW STUDY SHOWS CANNABIS CAN REVERSE COGNITIVE DECLINE IN MICE” http://www.newsweek.com/cannabis-marijuana-restores-memory-learning-cognitive-decline-596160

“A little cannabis every day might keep brain ageing at bay” https://www.newscientist.com/article/2130257-a-little-cannabis-every-day-might-keep-brain-ageing-at-bay/

“Low-dose cannabinoid THC restores memory and learning in old mice”  http://www.medicalnewstoday.com/articles/317342.php

“Daily Dose Of Cannabis May Protect And Heal The Brain From Effects Of Aging”  https://www.forbes.com/sites/janetwburns/2017/05/08/daily-dose-of-cannabis-may-protect-and-heal-the-brain-from-effects-of-aging/#70ef658f2e44

“Cannabis reverses aging processes in the brain”  https://medicalxpress.com/news/2017-05-cannabis-reverses-aging-brain.html

“Future dementia cure – Chemical in cannabis could REVERSE the ageing process” http://www.express.co.uk/life-style/health/801827/dementia-cure-cannabis-THC-chemical-memory

Editorial: The CB2 Cannabinoid System: A New Strategy in Neurodegenerative Disorder and Neuroinflammation

Image result for frontiers in neuroscience

“The cannabinoid receptors subtype 2 (CB2R) are emerging as novel targets for the development of new therapeutic approaches and PET probes useful to early diagnose neuroinflammation as first step in several neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson disease (PD).

This Research Topic is mainly focused on the involvment of CB2R in neurodegenerative disorders and on the usefulness of CB2R ligands in the therapy and early diagnosis of neuroinflammation as onset of neurodegeneration.

In the reviews of Aso and Ferrer and Cassano et al. an interesting and exaustive overview of the endogenous cannabinoid signaling and its role in neuroinflammation and neurogenesis is reported. The potential of CB2R as therapeutic target in AD is argued by several evidences derived by robust experimental models and the effects modulated by CB2R agonists on different pathways involved in the pathogenesis of AD are discussed; indeed, these ligands are able to reduce inflammation, Aβ production and deposition, tau protein hyper-phosphorylation and oxidative stress damage caused by Aβ peptides. CB2R agonists are also able to induce Aβ clearance leading to cognitive improvement in AD models.

In conclusion, considering that neuroinflammation has been widely reported as indicator and modulator of neurodegeneration, the reduction of the neuroinflammatory responses could be considered as a new therapeutic strategy in these diseases. Moreover, the selective CB2R overexpression on the activated-microglial cells provides also a highly specialized target useful to an early diagnosis of the neurodegenerative diseases.”

http://journal.frontiersin.org/article/10.3389/fnins.2017.00196/full