Marijuana fights Alzheimer’s disease, Salk Institute scientists discover

Cannabinoids remove plaque-forming Alzheimer's proteins from brain cells

“Salk Institute scientists have discovered that a main compound found in marijuana can fight a toxic protein associated with Alzheimer’s disease. According to the scientists, at this time, there are no drugs that significantly inhibit cell death associated with Alzheimer’s disease (AD), Parkinson’s or Huntington’s diseases. However, the most recent data about Alzheimer’s and marijuana suggests that there is a therapeutic potential of cannabinoids (the chemical compounds secreted by cannabis flowers) for the treatment of AD. Cannabinoids are able to remove plaque-forming Alzheimer’s proteins from brain cells, reports the Medical Express on June 29.”  http://www.examiner.com/article/marijuana-fights-alzheimer-s-disease-salk-institute-scientists-discover

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells”  http://medicalxpress.com/news/2016-06-cannabinoids-plaque-forming-alzheimer-proteins-brain.html

“Cannabinoids remove toxic proteins associated with Alzheimer’s disease from the brain” http://www.irishexaminer.com/examviral/science-world/cannabinoids-remove-toxic-proteins-associated-with-alzheimers-disease-from-the-brain-407788.html

“Marijuana Compound Helps Remove Alzheimer’s Disease Protein From Brain” -brain.” http://www.scienceworldreport.com/articles/42990/20160630/marijuana-compound-helps-remove-alzheimers-disease-protein-from-brain.htm

“Marijuana compound removes toxic Alzheimer’s protein from the brain”  http://www.sciencealert.com/marijuana-compound-removes-toxic-alzheimer-s-protein-from-the-brain

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells”  https://www.sciencedaily.com/releases/2016/06/160629095609.htm

“Cannabinoids Remove Plaque-forming Alzheimer’s Proteins from Brain Cells”  https://www.laboratoryequipment.com/news/2016/06/cannabinoids-remove-plaque-forming-alzheimers-proteins-brain-cells

“MARIJUANA COMPOUND REMOVES ALZHEIMER’S PLAQUE FROM BRAIN CELLS, STUDY FINDS” http://www.popsci.com/marijuana-compound-removes-alzheimers-plaque-from-brain-cells-study

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells. Preliminary lab studies at the Salk Institute find THC reduces beta amyloid proteins in human neurons.” http://www.salk.edu/news-release/cannabinoids-remove-plaque-forming-alzheimers-proteins-from-brain-cells/

 

Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids

“The beta amyloid (Aβ) and other aggregating proteins in the brain increase with age and are frequently found within neurons. The mechanistic relationship between intracellular amyloid, aging and neurodegeneration is not, however, well understood.

We use a proteotoxicity model based upon the inducible expression of Aβ in a human central nervous system nerve cell line to characterize a distinct form of nerve cell death caused by intracellular Aβ.

It is shown that intracellular Aβ initiates a toxic inflammatory response leading to the cell’s demise. Aβ induces the expression of multiple proinflammatory genes and an increase in both arachidonic acid and eicosanoids, including prostaglandins that are neuroprotective and leukotrienes that potentiate death.

Cannabinoids such as tetrahydrocannabinol stimulate the removal of intraneuronal Aβ, block the inflammatory response, and are protective.

Altogether these data show that there is a complex and likely autocatalytic inflammatory response within nerve cells caused by the accumulation of intracellular Aβ, and that this early form of proteotoxicity can be blocked by the activation of cannabinoid receptors.”

http://www.nature.com/articles/npjamd201612

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells. Preliminary lab studies at the Salk Institute find THC reduces beta amyloid proteins in human neurons.” http://www.salk.edu/news-release/cannabinoids-remove-plaque-forming-alzheimers-proteins-from-brain-cells/

CB2 Cannabinoid Receptor As Potential Target against Alzheimer’s Disease.

“The CB2 receptor is one of the components of the endogenous cannabinoid system, a complex network of signaling molecules and receptors involved in the homeostatic control of several physiological functions. Accumulated evidence suggests a role for CB2 receptors in Alzheimer’s disease (AD) and indicates their potential as a therapeutic target against this neurodegenerative disease.

Levels of CB2 receptors are significantly increased in post-mortem AD brains, mainly in microglia surrounding senile plaques, and their expression levels correlate with the amounts of Aβ42 and β-amyloid plaque deposition.

Moreover, several studies on animal models of AD have demonstrated that specific CB2 receptor agonists, which are devoid of psychoactive effects, reduce AD-like pathology, resulting in attenuation of the inflammation associated with the disease but also modulating Aβ and tau aberrant processing, among other effects.

CB2 receptor activation also improves cognitive impairment in animal models of AD.

This review discusses available data regarding the role of CB2 receptors in AD and the potential usefulness of specific agonists of these receptors against AD.”

http://www.ncbi.nlm.nih.gov/pubmed/27303261

Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer’s disease

Cover image

“Brain disorders, including Alzheimer’s disease (AD), often involve specific early alterations in the metabolism of glucose in the brain.

The idea of alleviating symptoms of dementia by boosting cerebral energy metabolism has been toyed with for decades, yet safe pharmacological agents with well characterized mechanism of action are still lacking.

In this sense, we have investigated here the local cerebral glucoregulatory potential of the endocannabinoid system in rodents.

Cannabinoid CB2 receptors (CB2Rs) are emerging as important therapeutic targets in brain disorders that typically involve neurometabolic alterations.

Together, these results reveal a novel general glucoregulatory role for CB2Rs in the brain, raising therapeutic interest in CB2R agonists as nootropic agents.

In conclusion, the present results provide the first direct pharmacological evidence in vitroand in vivo of a role of CB2R in central glucoregulation.

Additionally, we found that glucoregulation by endogenous CB2R signalling is negatively affected by β-amyloidosis, thought to be the first pathological step in AD.

Therefore, it would be interesting to perform further studies to define how CB2R mediated glucoregulation contributes to the recently discovered therapeutic potential of CB2R agonists in animal models of AD”

http://www.sciencedirect.com/science/article/pii/S0028390816300879

Pharmacological management of agitation and aggression in Alzheimer’s Disease: a review of current and novel treatments.

“Agitation and aggression are common neuropsychiatric symptoms of Alzheimer’s disease and are highly prevalent in people with dementia. When pharmacological intervention becomes necessary, current clinical practice guidelines recommend antipsychotics, cholinesterase inhibitors (ChEIs), and some antidepressants.

However, those interventions have modest to low efficacy, and those with the highest demonstrated efficacy have significant safety concerns. As a result, current research is focusing on novel compounds that have different mechanisms of action and that may have a better balance of efficacy over safety.

The purpose of this review is to evaluate novel pharmacological therapies for the management of agitation and aggression in AD patients. We performed a comprehensive literature search to identify recent novel drugs that are not included in most clinical practice guidelines or are currently undergoing clinical trials for the treatment of agitation and/or aggression in AD.

This review suggests that novel treatments, such as cannabinoids, lithium, non-steroidal anti-inflammatory drugs, analgesics, narcotics, and newer antiepileptic drugs, may provide a safer alternative treatment options for the management of agitation and aggression in AD and requires further study in order to clarify their risks and benefits.”

http://www.ncbi.nlm.nih.gov/pubmed/27137221

http://www.thctotalhealthcare.com/category/alzheimers-disease-ad/

Neuroscientists discover previously unknown function of cannabinoid receptor

Neuroscientists discover previously unknown function of cannabinoid receptor

“Previously Unknown Function of a Cannabinoid Receptor Identified.  Study could improve our insights into brain diseases.” http://neurosciencenews.com/cb2-cannabinoid-receptor-hippocampus-4147/

“In the brain, there is a delicate interplay of signaling substances and cellular activity. Scientists have now identified another key player within this ensemble. In a laboratory study they found that the ‘cannabinoid type 2 receptor’ influences information processing inside the hippocampus. The research results might help advance our understanding of schizophrenia and Alzheimer’s, say the authors.”  https://www.sciencedaily.com/releases/2016/05/160502111228.htm

“The cannabinoid type 2 receptor – also called “CB2 receptor” – is a special membrane protein. Its function is to receive chemical signals that control cellular activity. “Until now, this receptor was considered part of the immune system without function in nerve cells. However, our study shows that it also plays an important role in the signal processing of the brain,” explains Professor Dietmar Schmitz, Speaker for the DZNE-Site Berlin and Director of the Neuroscience Research Center of the Charité (NWFZ/NeuroCure).”  https://scienceblog.com/483935/neuroscientists-discover-previously-unknown-function-cannabinoid-receptor/

 

Cannabinoid Type 2 Receptors Mediate a Cell Type-Specific Plasticity in the Hippocampus

“Endocannabinoids (eCBs) exert major control over neuronal activity by activating cannabinoid receptors (CBRs).

The functionality of the eCB system is primarily ascribed to the well-documented retrograde activation of presynaptic CB1Rs.

We find that action potential-driven eCB release leads to a long-lasting membrane potential hyperpolarization in hippocampal principal cells that is independent of CB1Rs.

The hyperpolarization, which is specific to CA3 and CA2 pyramidal cells (PCs), depends on the activation of neuronal CB2Rs, as shown by a combined pharmacogenetic and immunohistochemical approach.

Upon activation, they modulate the activity of the sodium-bicarbonate co-transporter, leading to a hyperpolarization of the neuron.

CB2R activation occurred in a purely self-regulatory manner, robustly altered the input/output function of CA3 PCs, and modulated gamma oscillations in vivo.

To conclude, we describe a cell type-specific plasticity mechanism in the hippocampus that provides evidence for the neuronal expression of CB2Rs and emphasizes their importance in basic neuronal transmission.”

http://www.cell.com/neuron/abstract/S0896-6273(16)30025-3

Natural Phytochemicals in the Treatment and Prevention of Dementia: An Overview.

“The word dementia describes a class of heterogeneous diseases which etiopathogenetic mechanisms are not well understood. There are different types of dementia, among which, Alzheimer’s disease (AD), vascular dementia (VaD), dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD) are the more common.

Currently approved pharmacological treatments for most forms of dementia seem to act only on symptoms without having profound disease-modifying effects. Thus, alternative strategies capable of preventing the progressive loss of specific neuronal populations are urgently required.

In particular, the attention of researchers has been focused on phytochemical compounds that have shown antioxidative, anti-amyloidogenic, anti-inflammatory and anti-apoptotic properties and that could represent important resources in the discovery of drug candidates against dementia.

In this review, we summarize the neuroprotective effects of the main phytochemicals belonging to the polyphenol, isothiocyanate, alkaloid and cannabinoid families in the prevention and treatment of the most common kinds of dementia.

We believe that natural phytochemicals may represent a promising sources of alternative medicine, at least in association with therapies approved to date for dementia.”

http://www.ncbi.nlm.nih.gov/pubmed/27110749

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

The multiplicity of action of cannabinoids: implications for treating neurodegeneration.

“The cannabinoid (CB) system is widespread in the central nervous system and is crucial for controlling a range of neurophysiological processes such as pain, appetite, and cognition. The endogenous CB molecules, anandamide, and 2-arachidonoyl glycerol, interact with the G-protein coupled CB receptors, CB(1) and CB(2).

These receptors are also targets for the phytocannabinoids isolated from the cannabis plant and synthetic CB receptor ligands.

The CB system is emerging as a key regulator of neuronal cell fate and is capable of conferring neuroprotection by the direct engagement of prosurvival pathways and the control of neurogenesis.

Many neurological conditions feature a neurodegenerative component that is associated with excitotoxicity, oxidative stress, and neuroinflammation, and certain CB molecules have been demonstrated to inhibit these events to halt the progression of neurodegeneration.

Such properties are attractive in the development of new strategies to treat neurodegenerative conditions of diverse etiology, such as Alzheimer’s disease, multiple sclerosis, and cerebral ischemia.

This article will discuss the experimental and clinical evidence supporting a potential role for CB-based therapies in the treatment of certain neurological diseases that feature a neurodegenerative component.”

http://www.ncbi.nlm.nih.gov/pubmed/20875047