Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer’s disease.

“Cannabinoid CB2 receptors (CB2Rs) are emerging as important therapeutic targets in brain disorders that typically involve neurometabolic alterations. We here addressed the possible role of CB2Rs in the regulation of glucose uptake in the mouse brain.

Together, these results reveal a novel general glucoregulatory role for CB2Rs in the brain, raising therapeutic interest in CB2R agonists as nootropic agents.”

http://www.ncbi.nlm.nih.gov/pubmed/26976670

Cannabinoid Receptor 2 Participates in Amyloid-β Processing in a Mouse Model of Alzheimer’s Disease but Plays a Minor Role in the Therapeutic Properties of a Cannabis-Based Medicine.

“The endogenous cannabinoid system represents a promising therapeutic target to modify neurodegenerative pathways linked to Alzheimer’s disease (AD).

The aim of the present study was to evaluate the specific contribution of CB2 receptor to the progression of AD-like pathology and its role in the positive effect of a cannabis-based medicine (1:1 combination of Δ9-tetrahidrocannabinol and cannabidiol) previously demonstrated to be beneficial in the AβPP/PS1 transgenic model of the disease.

A new mouse strain was generated by crossing AβPP/PS1 transgenic mice with CB2 knockout mice. Results show that lack of CB2 exacerbates cortical Aβ deposition and increases the levels of soluble Aβ40. However, CB2 receptor deficiency does not affect the viability of AβPP/PS1 mice, does not accelerate their memory impairment, does not modify tau hyperphosphorylation in dystrophic neurites associated to Aβ plaques, and does not attenuate the positive cognitive effect induced by the cannabis-based medicine in these animals.

These findings suggest a minor role for the CB2 receptor in the therapeutic effect of the cannabis-based medicine in AβPP/PS1 mice, but also constitute evidence of a link between CB2 receptor and Aβ processing.”

http://www.ncbi.nlm.nih.gov/pubmed/26890764

http://www.thctotalhealthcare.com/category/alzheimers-disease-ad/

Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta.

“Alzheimer’s disease is associated with amyloid-beta (Aβ)-induced microglia activation.

This pro-inflammatory response promotes neuronal damage, and therapies are sought to limit microglial activation.

The objective of this study was to characterize Aβ-induced activation of IMG cells, and here, we demonstrate the ability of cannabinoids to significantly reduce this inflammatory response.

Aβ-induced activation of IMG cells was suppressed by delta-9-tetrahydrocannabinol and the CB2-selective agonist JWH-015 in a time- and concentration-dependent manner.

IMG cells recapitulate key features of microglial cell activation. As an example of their potential pharmacological use, cannabinoids were shown to reduce activation of Aβ-induced iNOS gene expression.”

http://www.ncbi.nlm.nih.gov/pubmed/26819091

Safety and Efficacy of Medical Cannabis Oil for Behavioral and Psychological Symptoms of Dementia: An-Open Label, Add-On, Pilot Study.

“Tetrahydrocannabinol (THC) is a potential treatment for Alzheimer’s disease (AD).

OBJECTIVE:

To measure efficacy and safety of medical cannabis oil (MCO) containing THC as an add-on to pharmacotherapy, in relieving behavioral and psychological symptoms of dementia (BPSD).

Eleven AD patients were recruited to an open label, 4 weeks, prospective trial.

RESULTS:

Ten patients completed the trial. Significant reduction in CGI severity score and NPI score were recorded. NPI domains of significant decrease were: Delusions, agitation/aggression, irritability, apathy, and sleep and caregiver distress.

CONCLUSION:

Adding MCO to AD patients’ pharmacotherapy is safe and a promising treatment option.”

http://www.ncbi.nlm.nih.gov/pubmed/26757043

http://www.thctotalhealthcare.com/category/alzheimers-disease-ad/

Characterization of Lignanamides from Hemp (Cannabis sativa L. ) Seed and their Antioxidant and Acetylcholinesterase Inhibitory Activities.

Image result for J Agric Food Chem.

“Hempseed is known for its content in fatty acids, proteins and fiber, which contribute to its nutritional value.

Here we studied the secondary metabolites of hempseed aiming at identifying bioactive compounds that could contribute to its health benefits.

This investigation led to the isolation of four new lignanamides cannabisin M, 2, cannabisin N, 5, cannabisin O, 8 and 3,3′-demethyl-heliotropamide, 10, together with ten known lignanamides, among which 4 was identified for the first time from hempseed.

Structures were established on the basis of NMR, HR-MS, UV, IR as well as by comparison with the literature data.

Lignanamides 2, 7, 9-14 showed good antioxidant activity among which 7, 10 and 13 also inhibited acetylcholinesterase in vitro.

The new identified compounds in this study added to the diversity of hempseed composition and the bioassays implied that hempseed, with lignanamides as nutrients, may be a good source of bioactive and protective compounds.”  http://www.ncbi.nlm.nih.gov/pubmed/26585089

“Alzheimer’s Disease (AD) is the most common single cause of dementia in our ageing society. On full assessment and diagnosis of AD, initiation of an AChe inhibitor is recommended as early as possible, it is important that AChe inhibitor therapy is considered for patients with mild to moderate AD.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2014378/

 “The Effects of Hempseed Meal Intake and Linoleic Acid on Drosophila Models of Neurodegenerative Diseases and Hypercholesterolemia. Our results indicate that hempseed meal (HSM) and linoleic acid are potential candidates for the treatment of Alzheimer’s disease (AD) and cardiovascular disease. These results show that HSM may prove of great utility as a health food, with potential for the prevention of AD and cardiovascular disease.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933972/

Pharmacological benefits of selective modulation of cannabinoid receptor type 2 (CB2) in experimental Alzheimer’s disease.

“Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that pervasively affects the population across the world.

Currently, there is no effective treatment available for this and existing drugs merely slow the progression of cognitive function decline. Thus, massive effort is required to find an intended therapeutic target to overcome this condition.

The present study has been framed to investigate the ameliorative role of selective modulator of cannabinoid receptor type 2 (CB2), 1-phenylisatin in experimental AD condition…

Hence, this study concludes that CB2 receptor modulation can be a potential therapeutic target for the management of AD.”

http://www.ncbi.nlm.nih.gov/pubmed/26577751

Potential Therapeutical Contributions of the Endocannabinoid System towards Aging and Alzheimer’s Disease.

“Aging can lead to decline in cognition, notably due to neurodegenerative processes overwhelming the brain over time.

As people live longer, numerous concerns are rightfully raised toward long-term slowly incapacitating diseases with no cure, such as Alzheimer’s disease.

Since the early 2000’s, the role of neuroinflammation has been scrutinized for its potential role in the development of diverse neurodegenerative diseases notably because of its slow onset and chronic nature in aging.

Despite the lack of success yet, treatment of chronic neuroinflammation could help alleviate process implicated in neurodegenerative disease.

A growing number of studies including our own have aimed at the endocannabinoid system and unfolded unique effects of this system on neuroinflammation, neurogenesis and hallmarks of Alzheimer’s disease and made it a reasonable target in the context of normal and pathological brain aging.”

http://www.ncbi.nlm.nih.gov/pubmed/26425394

Endocannabinoids and Neurodegenerative Disorders: Parkinson’s Disease, Huntington’s Chorea, Alzheimer’s Disease, and Others.

“This review focuses on the role of the endocannabinoid signaling system in controlling neuronal survival, an extremely important issue to be considered when developing new therapies for neurodegenerative disorders.

First, we will describe the cellular and molecular mechanisms, and the signaling pathways, underlying these neuroprotective properties, including the control of glutamate homeostasis, calcium influx, the toxicity of reactive oxygen species, glial activation and other inflammatory events; and the induction of autophagy.

We will then concentrate on the preclinical studies and the few clinical trials that have been carried out targeting endocannabinoid signaling in three important chronic progressive neurodegenerative disorders (Parkinson’s disease, Huntington’s chorea, and Alzheimer’s disease), as well as in other less well-studied disorders.

We will end by offering some ideas and proposals for future research that should be carried out to optimize endocannabinoid-based treatments for these disorders.

Such studies will strengthen the possibility that these therapies will be investigated in the clinical scenario and licensed for their use in specific disorders.”

Endocannabinoid regulation of amyloid-induced neuroinflammation.

“The modulation of endocannabinoid (EC) levels and the activation of cannabinoid receptors are seen as promising therapeutic strategies in a variety of diseases, including Alzheimer’s disease (AD).

These data reinforce the notion of a role for the EC system in neuroinflammation and open new perspectives on the relevance of modulating EC levels in the inflammed brain.”

http://www.ncbi.nlm.nih.gov/pubmed/26362942

Age-related changes in the endocannabinoid system in the mouse hippocampus.

“Previous studies have demonstrated that the endocannabinoid system significantly influences the progression of brain ageing, and the hippocampus is one of the brain regions most vulnerable to ageing and neurodegeneration.

We have further examined age-related changes in the hippocampalendocannabinoid system by measuring the levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in young and old mice from two different mouse strains.

We found a decrease in 2-AG but not AEA levels in aged mice.

In order to identify the cause for 2-AG level changes, we investigated the levels of several enzymes that contribute to synthesis and degradation of 2-AG in the hippocampus.

We found a selective decrease in DAGLα mRNA and protein levels as well as an elevated MAGL activity during ageing.

We hypothesize that the observed decrease of 2-AG levels is probably caused by changes in DAGLα expression and MAGL activity.

This finding can contribute to the existing knowledge about the processes underlying selective vulnerability of the hippocampus to ageing and age-related neurodegeneration.”

http://www.ncbi.nlm.nih.gov/pubmed/26278494