Deletion of Type-2 Cannabinoid Receptor Induces Alzheimer’s Disease-Like Tau Pathology and Memory Impairment Through AMPK/GSK3β Pathway.

Molecular Neurobiology

“Although several studies have shown that type-2 cannabinoid receptor (CB2R) is involved in Alzheimer’s disease (AD) pathology, the effects of CB2R on AD-like tau abnormal phosphorylation and its underlying mechanism remain unclear.

Herein, we employed the CB2R-/- mice as the animal model to explore roles of CB2R in regulating tau phosphorylation and brain function.

Taken together, our study indicated that deletion of CB2R induces behavior damage and AD-like pathological alternation via AMPK/GSK3β pathway. These findings proved that CB2R/AMPK/GSK3β pathway can be a promising new drug target for AD.”

Endocannabinoid System in Neurodegenerative Disorders.

“Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid (EC) system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs.” https://www.ncbi.nlm.nih.gov/pubmed/28608560 http://onlinelibrary.wiley.com/doi/10.1111/jnc.14098/abstract]]>

Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders.

Image result for frontiers in pharmacology “Beneficial effects of cannabidiol (CBD) have been described for a wide range of psychiatric disorders, including anxiety, psychosis, and depression. The mechanisms responsible for these effects, however, are still poorly understood. Similar to clinical antidepressant or atypical antipsychotic drugs, recent findings clearly indicate that CBD, either acutely or repeatedly administered, induces plastic changes. For example, CBD attenuates the decrease in hippocampal neurogenesis and dendrite spines density induced by chronic stress and prevents microglia activation and the decrease in the number of parvalbumin-positive GABA neurons in a pharmacological model of schizophrenia. More recently, it was found that CBD modulates cell fate regulatory pathways such as autophagy and others critical pathways for neuronal survival in neurodegenerative experimental models, suggesting the potential benefit of CBD treatment for psychiatric/cognitive symptoms associated with neurodegeneration. These changes and their possible association with CBD beneficial effects in psychiatric disorders are reviewed here.” https://www.ncbi.nlm.nih.gov/pubmed/28588483 http://journal.frontiersin.org/article/10.3389/fphar.2017.00269/full
]]>