The therapeutic potential of the endocannabinoid system for Alzheimer’s disease.

“Based on the complex pathology of AD, a preventative, multimodal drug approach targeting a combination of pathological AD symptoms appears ideal. Importantly, cannabinoids show anti-inflammatory, neuroprotective and antioxidant properties and have immunosuppressive effects. Thus, the cannabinoid system should be a prime target for AD therapy. The cannabinoid receptor 2 appears to be a promising candidate but its role in AD has to be investigated cautiously. Furthermore, the phytocannabinoid cannabidiol is of particular interest as it lacks the psychoactive and cognition-impairing properties of other cannabinoids. In conclusion, future research should focus on the evaluation of the effects of manipulations to the endocannabinoid system in established animal models for AD, combined with early-phase studies in humans.”

http://www.ncbi.nlm.nih.gov/pubmed/22448595

Hope for cannabis-based drug for Alzheimer’s

“A compound derived from marijuana might one day help fight the memory loss associated with Alzheimer’s disease, a new study suggests.

“Researchers have shown that a synthetic drug similar to cannabis can help older rats perform better on a spatial memory task.

Over a period of three weeks, Gary Wenk at Ohio State University in Columbus, US, and colleagues injected the brains of young and old rats with an inflammatory molecule that created an immune response in the animals’ brains which mimics that seen in Alzheimer’s patients.

During the same period the researchers also injected some of the rats with a synthetic drug similar to cannabis, called WIN-55212-2, which stimulates the brain receptors that normally respond to cannabis compounds.

The rats that received WIN-55212-2 in both age groups found the platform faster than their control counterparts. However, the difference between the treated and untreated animals’ performance was greatest among the older rats. The brains of rats receiving the synthetic drug also showed less sign of inflammation.

The results are impressive particularly because of the low dose of drug used in the experiment, comments Ken Mackie at the University of Washington in Seattle, US, who was not involved in the study.

“They gave them a relatively low dose, even for a rat.” Mackie says that this aspect of the study makes the prospect of developing a similar treatment for humans with Alzheimer’s disease “more promising”.

Wenk cautions, however, that WIN-55212-2 still causes psychoactive effects similar to cannabis, and as such is not yet a candidate for human use. Researchers are currently trying to develop a similar drug that could control inflammation in the brain without a concomitant high.”

Read more: http://www.newscientist.com/article/dn10330-hope-for-cannabisbased-drug-for-alzheimers.html

Scientists are high on idea that marijuana reduces memory impairment

“The more research they do, the more evidence Ohio State University scientists find that specific elements of marijuana can be good for the aging brain by reducing inflammation there and possibly even stimulating the formation of new brain cells.

The research suggests that the development of a legal drug that contains certain properties similar to those in marijuana might help prevent or delay the onset of Alzheimer’s disease. Though the exact cause of Alzheimer’s remains unknown, chronic inflammation in the brain is believed to contribute to memory impairment.

Any new drug’s properties would resemble those of tetrahydrocannabinol, or THC, the main psychoactive substance in the cannabis plant, but would not share its high-producing effects.

.”Could people smoke marijuana to prevent Alzheimer’s disease if the disease is in their family? We’re not saying that, but it might actually work. What we are saying is it appears that a safe, legal substance that mimics those important properties of marijuana can work on receptors in the brain to prevent memory impairments in aging. So that’s really hopeful,” Wenk said”

Read more: http://phys.org/news146320102.html

Cannabinoid receptor agonist protects cultured dopaminergic neurons from the death by the proteasomal dysfunction.

“Cannabinoids (CBs) from the Cannabis sativa L. plant, including tetrahydrocannabinol, the principal psychoactive component of marijuana, produce euphoria and relaxation and also impair motor coordination, perception of time, and short-term memory. The principal actions of CBs are mediated by activation of their cognate receptors on presynaptic nerve ends. Various types of cannabinoid receptors, including the orphan G-protein coupled receptors CB1 and CB2, are found in blood vessels, the central nervous system, and immune cells. While CB1 is expressed abundantly in several areas in the brain as well as in peripheral tissues, CB2 is primarily expressed in the immune system, although it was recently detected at low levels in peripheral nerve endings, microglial cells, and astrocytes, as well as in the cerebellum and brain stem. CB1 receptor activation is involved in the control of neural cell fate and mediates neuroprotectivity in different in vivo models of brain injury, including excitotoxicity and ischemia.

In recent years, the capacity of CBs to effect neuroprotection and neurotoxicity has received increasing attention. Evidence of possible neuroprotective effects has accumulated in vitro from models of neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases and multiple sclerosis, as well as from in vivo clinical trial data. These compounds are also able to decrease inflammation by acting on glial cells that influence neuronal survival. The molecular mechanisms underlying cannabinoid-mediated neuroprotection are still poorly understood, but may include the direct activation of neuronal survival signaling pathways through cannabinoid receptors or indirect effects mediated by microglial CB2-receptor stimulation.

Here, we investigated the neuroprotective function of a synthetic cannabinoid-receptor agonist (WIN55.212.2)… These results indicate that WIN55.212.2 may be a candidate for treatment of neurodegenerative diseases, including Parkinson’s disease.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145842/

Latest advances in cannabinoid receptor agonists.

“Since the discovery of cannabinoid receptors and their endogenous ligands in early 1990s, the endocannabinoid system has been shown to play a vital role in several pathophysiological processes. It has been targeted for the treatment of several diseases including neurodegenerative diseases (Parkinson’s disease, Alzheimer’s disease, Huntington’s disease and MS), cancer, obesity, inflammatory bowel disease, neuropathic and inflammatory pain. The last decade has witnessed remarkable advances in the development of cannabinergic ligands displaying high selectivity and potency towards two subtypes of cannabinoid receptors, namely CB1 and CB2.”

 “…we highlight the latest advances made in the development of cannabinoid agonists and summarize recently disclosed, novel chemical scaffolds as CB-selective agonists…”

 

“CONCLUSIONS:

Our analysis reveals prolific patenting activity mainly in the CB2 selective agonist area. Limiting the BBB penetrability, thereby, leading to peripherally restricted CB1/CB2 agonists and enhancing CB2-selectivity emerge as likely prerequisites for avoidance of adverse central CB1 mediated side effects.”

http://www.ncbi.nlm.nih.gov/pubmed/19939187

From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

Image result for West Indian Med J

“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”

http://www.ncbi.nlm.nih.gov/pubmed/23155985

Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice

“Background

Alzheimer’s disease (AD) brain shows an ongoing inflammatory condition and non-steroidal anti-inflammatories diminish the risk of suffering the neurologic disease. Cannabinoids are neuroprotective and anti-inflammatory agents with therapeutic potential.”

“… we have shown that chronically administered cannabinoid showed marked beneficial effects concomitant with inflammation reduction and increased Aβ clearance.”

“Cannabinoids, whether plant derived, synthetic or endocannabinoids, interact with two well characterized cannabinoid receptors, CB1 and CB2 . In addition, some cannabinoids may interact with other receptors, such as the TRPV1 receptor or the orphan receptor GPR55. The CB1 receptor is widely distributed, with a particularly high expression in brain, which contrasts with the limited expression of the CB2 receptor, which is characteristic of immune organs and cells. In fact, while CB1 receptors are expressed by all types of cells in the brain (neurons and glial cells), CB2 are mainly localized in microglial cells, the resident immune cell of the brain.”

“We and others have proposed cannabinoids as preventive treatment for AD, based on their neuroprotective and anti-inflammatory effects. Indeed, cannabinoids are able to decrease the release of cytokines and nitric oxide in cultured microglial cells induced by lipopolysacharide and Aβ addition. In several in vitro studies cannabidiol (CBD), the major non-psychotropic constituent of cannabis, has shown to be neuroprotective against β-amyloid (Aβ) addition to cultured cells.”

“Conclusions

In summary, cannabinoid agonists, in particular CB2 selective agonists, interfere with several interconnected events of importance in the pathophysiology of AD. These compounds by directly interacting with cannabinoid receptors, in particular CB2, decrease microglial activation thereby reducing inflammation and its consequences (eg cognitive deficits). At the same time they may indirectly have beneficial effects on microglial activation (eg decrease cytokine release) by lowering brain Aβ levels.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292807/

Therapeutic potential of cannabinoid-based drugs.

Abstract

“Cannabinoid-based drugs modeled on cannabinoids originally isolated from marijuana are now known to significantly impact the functioning of the endocannabinoid system of mammals. This system operates not only in the brain but also in organs and tissues in the periphery including the immune system. Natural and synthetic cannabinoids are tricyclic terpenes, whereas the endogenous physiological ligands are eicosanoids. Several receptors for these compounds have been extensively described, CB1 and CB2, and are G protein-coupled receptors; however, cannabinoid-based drugs are also demonstrated to function independently of these receptors. Cannabinoids regulate many physiological functions and their impact on immunity is generally antiinflammatory as powerful modulators of the cytokine cascade. This anti-inflammatory potency has led to the testing of these drugs in chronic inflammatory laboratory paradigms and even in some human diseases. Psychoactive and nonpsychoactive cannabinoid-based drugs such as Delta9-tetrahydrocannabinol, cannabidiol, HU-211, and ajulemic acid have been tested and found moderately effective in clinical trials of multiple sclerosis, traumatic brain injury, arthritis, and neuropathic pain. Furthermore, although clinical trials are not yet reported, preclinical data with cannabinoid-based drugs suggest efficacy in other inflammatory diseases such as inflammatory bowel disease, Alzheimer’s disease, atherosclerosis, and osteoporosis.”

http://www.ncbi.nlm.nih.gov/pubmed/17713029

Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

Philosophical Transactions of the Royal Society B: Biological Sciences: 367 (1607)

“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.”  https://www.ncbi.nlm.nih.gov/pubmed/23108552

“Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities”  http://rstb.royalsocietypublishing.org/content/367/1607/3353.long

Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance

Abstract

“Type-1 cannabinoid receptor (CB1) is the most abundant G-protein-coupled receptor (GPCR) in the brain. CB1 and its endogenous agonists, the so-called ‘endocannabinoids (eCBs)’, belong to an ancient neurosignalling system that plays important functions in neurodegenerative and neuroinflammatory disorders like Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and multiple sclerosis. For this reason, research on the therapeutic potential of drugs modulating the endogenous tone of eCBs is very intense. Several GPCRs reside within subdomains of the plasma membranes that contain high concentrations of cholesterol: the lipid rafts. Here, the hypothesis that changes in membrane fluidity alter function of the endocannabinoid system, as well as progression of particular neurodegenerative diseases, is described. To this end, the impact of membrane cholesterol on membrane properties and hence on neurodegenerative diseases, as well as on CB1 signalling in vitro and on CB1-dependent neurotransmission within the striatum, is discussed. Overall, present evidence points to the membrane environment as a critical regulator of signal transduction triggered by CB1, and calls for further studies aimed at better clarifying the contribution of membrane lipids to eCBs signalling. The results of these investigations might be exploited also for the development of novel therapeutics able to combat disorders associated with abnormal activity of CB1.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165948/