Inflammation and aging: can endocannabinoids help?

“Aging often leads to cognitive decline due to neurodegenerative process in the brain. As people live longer, a growing concern exist linked to long-term, slowly debilitating diseases that have not yet found a cure, such as Alzheimer’s disease. Recently, the role of neuroinflammation has attracted attention due to its slow onset, chronic nature and its possible role in the development of many different neurodegenerative diseases. In the future, treatment of chronic neuroinflammation may help counteract aspects of neurodegenerative disease. Our recent studies have focused upon the endocannabinoid system for its unique effects on the expression of neuroinflammation. The basis for the manipulation of the endocannabinoid system in the brain in combination with existing treatments for Alzheimer’s disease will be discussed in this review.”

“Endocannabinoids

Cannabinoid refers to naturally occurring or synthetic molecules mimicking the activity of plant-derived cannabinoids from Cannabis Sativa. Two types of cannabinoid receptors have been so far identified in the body, named CB1 and CB2. Discovery of cannabinoid receptors (CBr) lead to the finding of endogenous agonists for these receptors called endocannabinoids (EC). EC are derived from arachidonic acid, arachidonoylethanolamide (anandamide), and 2-arachidonoyl glycerol (2-AG), synthesized on-demand post-synaptically and released in response to the entry of calcium ions. These EC in combination with the two known CBr constitute the endocannabinoid system (ECS). In the central nervous system (CNS), CB1 is overwhelmingly represented over CB2 and particularly abundant in cortical regions, the hippocampus, cerebellum and basal ganglia while CB2 may be restricted to microglia or neurons in the brainstem  and cerebellum. Deactivation of the EC is due to a rapid enzymatic degradation in the synaptic cleft or after membrane transport. The ECS is thought to be a neuromodulator and an immunomodulator. In the CNS, the ECS can influence food intake, endocrine release, motor control, cognitive processes, emotions and perception. Cannabinoids treatment has been shown to be neuroprotective under many experimental conditions. Drugs that manipulate the ECS are currently evaluated in various diseases ranging from cancer to AIDS for their peripheral analgesic and immunosuppressive properties. Their anti-inflammatory actions may make them useful in the treatment of multiple sclerosis, Parkinson’s disease and AD. Very little in vivo evidence to support the use of EC receptor agonists has been reported, although in vitro studies have found evidence for their anti-inflammatory effectiveness. Our recent work demonstrated the anti-inflammatory effect of a chronic treatment of a low dose of the CBr agonist WIN-55,212-2 (without psychoactive effects) on the consequences of chronic neuroinflammation induced by the infusion of LPS into the 4th ventricle of young rats. Moreover, that same anti-inflammatory effect was found using a non-psychoactive dose given by slow subcutaneous infusion of WIN-55,212-2 to healthy aged rats; these rats also demonstrated improved spatial memory. Our ongoing work in aged rats has shown that treatment with the CBr agonist WIN-55,212-2 increases neurogenesis in the hippocampus. Our preliminary data suggest that the neurogenic and anti-inflammatory effects in aged rats are due to the agonist/antagonist properties of WIN-55,212-2 at multiple receptors.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408719/

How Cannabinoids May Slow Brain Aging

Stoners aren’t known for their memory prowess but a new review suggests that drugs similar to marijuana’s active ingredients may hold promise for preventing— or even reversing— brain aging and possibly Alzheimer‘s and other degenerative brain diseases.

Read more: http://healthland.time.com/2012/10/29/how-cannabinoids-may-slow-brain-aging/#ixzz2AjCxutuI

Major Health Benefits of Medical Cannabis

“The benefits of medical marijuana plant are extensive, pervasive, and long-standing. Because of the way the cannabis impacts the Autonomic Nervous System which develops the breath and relaxes the body, prospective for health and curative characteristics are huge. Some of the major health benefits of medical cannabis are explained below:

Treats Migraines

Cannabis healing has been very effective in the treatment of migraine headaches. Migraine headaches are vascular in source and are often preceded by an air characterized by nausea, flashes of light, faintness or photosensitivity.

Slows Down Tumor Growth

Studies have shown that cannabis help in slow down the facsimile and slow down the production of cancer cells in body. It is also a natural antiemetic, which makes it effectual in plummeting the nausea and vomiting related with chemo and radiation therapies. So taking marijuana slows down the tumor growth too.

Relieves Symptoms of Chronic Diseases

Marijuana is one of the best natural pain relievers that can help sufferers of chronic pain live more relaxed lives. The side effects are often much less severe than the other common pain medications.

Prevents Alzheimer’s

Cannabis reduces the occurrence of depression in Alzheimer’s patients, which can help patients to keep up a higher level of brain function. That is a powerful way to keep patients performance for a longer time after the first onset of Alzheimer’s disease.

Treats Glaucoma

Some strains of this medicinal plant have been shown that, they are potentially decreasing the force that glaucoma can place on the optic nerve; thereby the patients can easily cut the critical condition by smoking or taking the marijuana edibles or medicines.

Prevents Seizures

Seizure is a kind of epilepsy which almost affects more than 2 millions of Americans and 30 millions of people worldwide. Epilepsy is a condition when some of the brain cells become abnormally excitable. People using marijuana to control epilepsy should be alert when there is any removal of any tablets which controls seizures may leave you more susceptible to the patient. Marijuana is no exception. Patients with epilepsy are advised to exercise caution when using oral THC because there is no enough sufficient knowledge about the convulsive or anti-convulsive properties of the single compound.

For ADD and ADHD

Many people who endure with ADD and/or ADHD find that medical cannabis recovers their knack to hub and their level of recital with definite tasks. There are no clinical studies on humans but there are some beginner studies have done on animals that point to less hyperactivity and impulsivity with the use of cannabinoids (the active medicines in cannabis).

Relieve PMS

Millions of women have an illness on Premenstrual Syndrome (PMS). PMS includes the symptoms of headaches, abdominal cramps, bloating and fluid retention. Many women report that they have tried several different medications but none as give any significant relief like Medical Marijuana. Cannabis medicine has shown to give symptomatic relief from all the unpleasant symptoms of PMS.

Calm Those With Tourette’s and OCD

Several psychological disorders have been known to be related with the medical benefits of marijuana as well. Taking weed of prescribed amount on regular basis can slow down the tics for those who are suffering from Tourette’s syndrome and Obsessive Compulsive Disorder (OCD). Yes some of the qualities in marijuana plant help the patient to calm themselves when any creation of intrusive thoughts which produces fear, uneasiness and abnormal behaviors.”

http://www.herbalmission.org/major-health-benefits-of-medical-cannabis.php

Therapeutic aspects of cannabis and cannabinoids

The British Journal of Psychiatry

“HISTORY OF THERAPEUTIC USE

The first formal report of cannabis as a medicine appeared in China nearly 5000 years ago when it was recommended for malaria, constipation, rheumatic pains and childbirth and, mixed with wine, as a surgical analgesic. There are subsequent records of its use throughout Asia, the Middle East, Southern Africa and South America. Accounts by Pliny, Dioscorides and Galen remained influential in European medicine for 16 centuries.”

“It was not until the 19th century that cannabis became a mainstream medicine in Britain. W. B. O’Shaughnessy, an Irish scientist and physician, observed its use in India as an analgesic, anticonvulsant, anti-spasmodic, anti-emetic and hypnotic. After toxicity experiments on goats and dogs, he gave it to patients and was impressed with its muscle-relaxant, anticonvulsant and analgesic properties, and recorded its use-fulness as an anti-emetic.”

“After these observations were published in 1842, medicinal use of cannabis expanded rapidly. It soon became available ‘over the counter’ in pharmacies and by 1854 it had found its way into the United States Dispensatory. The American market became flooded with dozens of cannabis-containing home remedies.”

“Cannabis was outlawed in 1928 by ratification of the 1925 Geneva Convention on the manufacture, sale and movement of dangerous drugs. Prescription remained possible until final prohibition under the 1971 Misuse of Drugs Act, against the advice of the Advisory Committee on Drug Dependence.”

“In the USA, medical use was effectively ruled out by the Marijuana Tax Act 1937. This ruling has been under almost constant legal challenge and many special dispensations were made between 1976 and 1992 for individuals to receive ‘compassionate reefers’. Although this loophole has been closed, a 1996 California state law permits cultivation or consumption of cannabis for medical purposes, if a doctor provides a written endorsement. Similar arrangements apply in Italy and Canberra, Australia.”

“Results and Conclusions Cannabis and some cannabinoids are effective anti-emetics and analgesics and reduce intra-ocular pressure. There is evidence of symptom relief and improved well-being in selected neurological conditions, AIDS and certain cancers. Cannabinoids may reduce anxiety and improve sleep. Anticonvulsant activity requires clarification. Other properties identified by basic research await evaluation. Standard treatments for many relevant disorders are unsatisfactory. Cannabis is safe in overdose but often produces unwanted effects, typically sedation, intoxication, clumsiness, dizziness, dry mouth, lowered blood pressure or increased heart rate. The discovery of specific receptors and natural ligands may lead to drug developments. Research is needed to optimise dose and route of administration, quantify therapeutic and adverse effects, and examine interactions.”

http://bjp.rcpsych.org/content/178/2/107.long

The therapeutic potential of novel cannabinoid receptors.

Cover image

“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.”  http://www.ncbi.nlm.nih.gov/pubmed/19248809

“The therapeutic potential of novel cannabinoid receptors”  http://www.sciencedirect.com/science/article/pii/S0163725809000266

[The role of the endocannabinoid system in the regulation of endocrine function and in the control of energy balance in humans].

Abstract

“The endocannabinoid system has been recently recognized as an important modulatory system in the function of brain, endocrine, and immune tissues. It appears to play a very important regulatory role in the secretion of hormones related to reproductive functions and response to stress. The important elements of this system are: endocannabinoid receptors (types CB1 and CB2), their endogenous ligands (N-arachidonoylethanolamide, 2-arachidonoyl glycerol), enzymes involved in their synthesis and degradation, as well as cannabinoid antagonists. In humans this system also controls energy homeostasis and mainly influences the function of the food intake centers of the central nervous system and gastrointestinal tract activity. The endocannabinoid system regulates not only the central and peripheral mechanisms of food intake, but also lipids synthesis and turnover in the liver and adipose tissue as well as glucose metabolism in muscle cells. Rimonabant, a new and selective central and peripheral cannabinoid-1 receptor (CB1) blocker, has been shown to reduce body weight and improve cardiovascular risk factor (metabolic syndrome) in obese patients by increasing HDL-cholesterol and adiponectin blood levels as well as decreasing LDL-cholesterol, leptin, and C-reactive protein (a proinflammatory marker) concentrations. It is therefore possible to speculate about a future clinical use of CB1 antagonists, as a means of improving gonadotrophin pulsatility and fertilization capacity as well as the prevention of cardiovasculary disease and type 2 diabetes mellitus. Drugs acting as agonists of CB1 receptors (Dronabinol, Dexanabinol) are currently proposed for evaluation as drugs to treat neurodegenerative disorders (Alzheimer’s and Parkinson’s diseases), epilepsy, anxiety, and stroke.”

http://www.ncbi.nlm.nih.gov/pubmed/17369778

The Endocannabinoid System as an Emerging Target of Pharmacotherapy

Abstract

“The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson’s and Huntington’s disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB(1) receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB(1) receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB(2) receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients’ need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.”

Future Directions

“The length of this review, necessitated by the steady growth in the number of indications for the potential therapeutic use of cannabinoid-related medications, is a clear sign of the emerging importance of this field. This is further underlined by the quantity of articles in the public database dealing with the biology of cannabinoids, which numbered ∼200 to 300/year throughout the 1970s to reach an astonishing 5900 in 2004. The growing interest in the underlying science has been matched by a growth in the number of cannabinoid drugs in pharmaceutical development from two in 1995 to 27 in 2004, with the most actively pursued therapeutic targets being pain, obesity, and multiple sclerosis (Hensen, 2005). As in any rapidly growing area of research, not all the leads will turn out to be useful or even valid. Nevertheless, it is safe to predict that new therapeutic agents that affect the activity of the endocannaboinoid system will emerge and become members of our therapeutic armamentarium. The plant-derived cannabinoid preparation Sativex has already gained regulatory approval in Canada for the treatment of spasticity and pain associated with multiple sclerosis, and the CB1 receptor antagonist rimonabant has been approved in Europe and is awaiting Food and Drug Administration approval in the United States for the treatment of the metabolic syndrome. Undoubtedly, these will be followed by new and improved compounds aimed at the same or additional targets in the endocannabinoid system. However, it may be only after the widespread therapeutic use of such compounds that some important side effects will emerge. Although this occurrence would be undesirable from a health care perspective, such side effects may shed further light on the biological functions of endocannabinoids in health and disease.”

http://pharmrev.aspetjournals.org/content/58/3/389.long

The Endocannabinoid System and the Brain.

Abstract

“The psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), was isolated in the mid-1960s, but the cannabinoid receptors, CB1 and CB2, and the major endogenous cannabinoids (anandamide and 2-arachidonoyl glycerol) were identified only 20 to 25 years later. The cannabinoid system affects both central nervous system (CNS) and peripheral processes. In this review, we have tried to summarize research-with an emphasis on recent publications-on the actions of the endocannabinoid system on anxiety, depression, neurogenesis, reward, cognition, learning, and memory. The effects are at times biphasic-lower doses causing effects opposite to those seen at high doses. Recently, numerous endocannabinoid-like compounds have been identified in the brain. Only a few have been investigated for their CNS activity, and future investigations on their action may throw light on a wide spectrum of brain functions. Expected final online publication date for the Annual Review of Psychology Volume 64 is November 30, 2012. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.”

http://www.ncbi.nlm.nih.gov/pubmed/22804774

THC From Cannabis Destroys Cancer Cells

“The study results strongly suggest that if taken regularly, cannabis oil may be able to induce remission in leukemia patients without the horrendous side effects typically associated with standard radio-chemical treatment options. Although this is only one such study, other similar studies have shown equally impressive results.

 Many of the active ingredients found in cannabis-derived drugs show exceptional promise in treating some of the greatest hurdles facing modern medical science. In addition to their aforementioned capacity for safely treating certain forms of deadly cancer, they also show great promise in alleviating autoimmune conditions such as rheumatoid arthritis, multiple sclerosis, and even inflammatory bowel disease. A growing number of experts also note their possible viability treating a range of neurological disorders including Alzheimer’s and Lou Gehrig’s disease.”

http://www.globalhealingcenter.com/natural-health/thc-from-cannabis-destroys-cancer-cells/

The effects of hempseed meal intake and linoleic acid on Drosophila models of neurodegenerative diseases and hypercholesterolemia

Molecules and Cells

“Hemp seed is rich in polyunsaturated fatty acids (PUFAs), which have potential as therapeutic compounds for the treatment of neurodegenerative and cardiovascular disease.

In this study, we assessed the effects of the intake of  hempseed meal (HSM) and PUFAs on oxidative stress, cytotoxicity and neurological phenotypes, and cholesterol uptake, using Drosophila models.

HSM intake was shown to reduce H(2)O(2) toxicity markedly, indicating that HSM exerts a profound antioxidant effect.

Meanwhile, intake of HSM, as well as linoleic or linolenic acids (major PUFA components of HSM) was shown to ameliorate Aβ42-induced eye degeneration, thus suggesting that these compounds exert a protective effect against Aβ42 cytotoxicity.

Additionally, intake of HSM or linoleic acid was shown to reduce cholesterol uptake significantly.

Moreover, linoleic acid intake has been shown to delay pupariation, and cholesterol feeding rescued the linoleic acid-induced larval growth delay, thereby indicating that linoleic acid acts antagonistically with cholesterol during larval growth.

In conclusion, our results indicate that HSM and linoleic acid exert inhibitory effects on both Aβ42 cytotoxicity and cholesterol uptake, and are potential candidates for the treatment of Alzheimer’s disease and cardiovascular disease.”

http://www.ncbi.nlm.nih.gov/pubmed/21331775 

“A number of previous studies have shown that polyunsaturated fatty acids (PUFAs) and phytosterols are critically important for human health. Hempseed is a rich source of plant oil, which contains more than 80% PUFAs and 3922-6719 mg/kg of phytosterols (e.g., sitosterol and campesterol). The fatty acids in hempseed oil include a variety of essential fatty acids, including linoleic acid ”

https://link.springer.com/article/10.1007%2Fs10059-011-0042-6