Dynamic Changes in the Endocannabinoid System during the Aging Process: Focus on the Middle-Age Crisis

ijms-logo

“Endocannabinoid (eCB) signaling is markedly decreased in the hippocampus (Hip) of aged mice, and the genetic deletion of the cannabinoid receptor type 1 (CB1) leads to an early onset of cognitive decline and age-related histological changes in the brain. Thus, it is hypothesized that cognitive aging is modulated by eCB signaling through CB1.

In the present study, we detailed the changes in the eCB system during the aging process using different complementary techniques in mouse brains of five different age groups, ranging from adolescence to old age.

Our findings indicate that the eCB system is most strongly affected in middle-aged mice (between 9 and 12 months of age) in a brain region-specific manner. We show that 2-arachidonoylglycerol (2-AG) was prominently decreased in the Hip and moderately in caudate putamen (CPu), whereas anandamide (AEA) was decreased in both CPu and medial prefrontal cortex along with cingulate cortex (mPFC+Cg), starting from 6 months until 12 months. Consistent with the changes in 2-AG, the 2-AG synthesizing enzyme diacylglycerol lipase α (DAGLα) was also prominently decreased across the sub-regions of the Hip.

Interestingly, we found a transient increase in CB1 immunoreactivity across the sub-regions of the Hip at 9 months, a plausible compensation for reduced 2-AG, which ultimately decreased strongly at 12 months. Furthermore, quantitative autoradiography of CB1 revealed that [3H]CP55940 binding markedly increased in the Hip at 9 months. However, unlike the protein levels, CB1 binding density did not drop strongly at 12 months and at old age. Furthermore, [3H]CP55940 binding was significantly increased in the lateral entorhinal cortex (LEnt), starting from the middle age until the old age.

Altogether, our findings clearly indicate a middle-age crisis in the eCB system, which could be a potential time window for therapeutic interventions to abrogate the course of cognitive aging.”

https://pubmed.ncbi.nlm.nih.gov/36142165/

“In conclusion, our observations indicate that the eCB system is most affected during the middle age in a brain region-specific manner. Taken together, the middle-age crisis in the eCB signaling corresponds well with the onset of neuroinflammatory glial activity and cognitive deficits in mice. We now hypothesize that late middle-age is the time period when a therapy based on the activation of the cannabinoid system has the highest efficacy to prevent cognitive aging and pathologies related to brain aging.”

https://www.mdpi.com/1422-0067/23/18/10254/htm

Effects of rich cannabidiol oil on behavioral disturbances in patients with dementia: A placebo controlled randomized clinical trial

Frontiers - Crunchbase Company Profile & Funding

“Background: Almost 90% of patients with dementia suffer from some type of neurobehavioral symptom, and there are no approved medications to address these symptoms.

Objective: To evaluate the safety and efficacy of the medical cannabis oil “Avidekel” for the reduction of behavioral disturbances among patients with dementia.

Materials and methods: In this randomized, double-blind, single-cite, placebo-controlled trial conducted in Israel (ClinicalTrials.gov: NCT03328676), patients aged at least 60, with a diagnosis of major neurocognitive disorder and associated behavioral disturbances were randomized 2:1 to receive either “Avidekel,” a broad-spectrum cannabis oil (30% cannabidiol and 1% tetrahydrocannabinol: 295 mg and 12.5 mg per ml, respectively; n = 40) or a placebo oil (n = 20) three times a day for 16 weeks. The primary outcome was a decrease, as compared to baseline, of four or more points on the Cohen-Mansfield Agitation Inventory score by week 16.

Results: From 60 randomized patients [mean age, 79.4 years; 36 women (60.0%)], 52 (86.7%) completed the trial (all eight patients who discontinued treatment were from the investigational group). There was a statistically significant difference in the proportion of subjects who had a Cohen-Mansfield Agitation Inventory score reduction of ≥ 4 points at week 16: 24/40 (60.0%) and 6/20 (30.0%) for investigational and control groups, respectively (χ2 = 4.80, P = 0.03). There was a statistically significant difference in the proportion of subjects who had a Cohen-Mansfield Agitation Inventory score reduction of ≥ 8 points at week 16: 20/40 (50%) and 3/20 (15%), respectively (χ2 = 6.42, P = 0.011). The ANOVA repeated measures analysis demonstrated significantly more improvement in the investigational group compared to the control group at weeks 14 and 16 (F = 3.18, P = 0.02). Treatment was mostly safe, with no significant differences in the occurrence of adverse events between the two groups.

Conclusion: In this randomized controlled trial, ‘Avidekel’ oil significantly reduced agitation over placebo in patients suffering from behavioral disturbances related to dementia, with non-serious side-effects. Further research is required with a larger sample size.”

https://pubmed.ncbi.nlm.nih.gov/36148467/

“Our findings suggest that rich-CBD cannabis oil may alleviate agitation in older patients with dementia.”

https://www.frontiersin.org/articles/10.3389/fmed.2022.951889/full

Therapeutic properties of multi-cannabinoid treatment strategies for Alzheimer’s disease

Frontiers announces its first partnership with a leading Chinese University  | STM Publishing News

“Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by declining cognition and behavioral impairment, and hallmarked by extracellular amyloid-β plaques, intracellular neurofibrillary tangles (NFT), oxidative stress, neuroinflammation, and neurodegeneration. There is currently no cure for AD and approved treatments do not halt or slow disease progression, highlighting the need for novel therapeutic strategies.

Importantly, the endocannabinoid system (ECS) is affected in AD. Phytocannabinoids, including cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), interact with the ECS, have anti-inflammatory, antioxidant, and neuroprotective properties, can ameliorate amyloid-β and NFT-related pathologies, and promote neurogenesis. Thus, in recent years, purified CBD and THC have been evaluated for their therapeutic potential.

CBD reversed and prevented the development of cognitive deficits in AD rodent models, and low-dose THC improved cognition in aging mice. Importantly, CBD, THC, and other phytochemicals present in Cannabis sativa interact with each other in a synergistic fashion (the “entourage effect”) and have greater therapeutic potential when administered together, rather than individually. Thus, treatment of AD using a multi-cannabinoid strategy (such as whole plant cannabis extracts or particular CBD:THC combinations) may be more efficacious compared to cannabinoid isolate treatment strategies.

Here, we review the current evidence for the validity of using multi-cannabinoid formulations for AD therapy. We discuss that such treatment strategies appear valid for AD therapy but further investigations, particularly clinical studies, are required to determine optimal dose and ratio of cannabinoids for superior effectiveness and limiting potential side effects. Furthermore, it is pertinent that future in vivo and clinical investigations consider sex effects.”

https://pubmed.ncbi.nlm.nih.gov/36117622/

“This mini review highlights that multi-cannabinoid combination treatment strategies are valid candidates for novel AD therapies. However, further investigations, and in particular, clinical studies, are required to determine optimal dose and ratio of cannabinoids for treatment of behavioral, cognitive, and pathological symptoms of AD thereby also considering other cannabinoids in addition to the current focus on THC and CBD (most cannabis extract studies did not profile cannabinoid content beyond those two phytocannabinoids). Importantly, all relevant studies reviewed were carried out in one sex/gender only. Given that sex-specificity is evident in AD transgenic mouse models (van Eersel et al., 2015Jiao et al., 2016) and gender differences are seen in dementia (Oveisgharan et al., 2018) as well as in the ECS and the response to cannabis (Craft et al., 2013), it is pertinent that these future investigations consider both sexes.”

https://www.frontiersin.org/articles/10.3389/fnins.2022.962922/full

Neuroprotective potential of Cannabis sativa-based oils in Caenorhabditis elegans

Scientific Reports

“Substances from the Cannabis sativa species, especially cannabidiol (CBD) and Delta-9-tetrahydrocannabinol (Δ9-THC), have attracted medical attention in recent years. The actions of these two main cannabinoids modulate the cholinergic nervous system (CholNS) involving development, synaptic plasticity, and response to endogenous and environmental damage, as a characteristic of many neurodegenerative diseases.

The dynamics of these diseases are mediated by specific neurotransmitters, such as the GABAergic nervous system (GNS) and the CholNS. The nematode Caenorhabditis elegans is an important experimental model, which has different neurotransmitter systems that coordinate its behavior and has a transgene strain that encodes the human β-amyloid 1-42 peptide in body wall muscle, one of the main proteins involved in Alzheimer´s disease.

Therefore, the objective of this study was to evaluate the protective potential of terpenoids found in C. sativa in the GNS and CholNS of C. elegans. The effect of two C. sativa oils with variations in CBD and THC concentrations on acetylcholinesterase (AChE) activity, lipid peroxidation, and behavior of C. elegans was evaluated.

C. sativa oils were efficient in increasing pharyngeal pumping rate and reducing defecation cycle, AChE activity, and ROS levels in N2 strains. In the muscle:Abeta1-42 strain, mainly when using CBD oil, worm movement, body bends, and pharyngeal pumping were increased, with a reduced AChE activity.

Consequently, greater investments in scientific research are needed, in addition to breaking the taboo on the use of the C. sativa plant as an alternative for medicinal use, especially in neurodegenerative diseases, which have already shown positive initial results.”

https://pubmed.ncbi.nlm.nih.gov/36100636/

https://www.nature.com/articles/s41598-022-19598-3

An Ultra-Low Dose of ∆9-Tetrahydrocannabinol Alleviates Alzheimer’s Disease-Related Cognitive Impairments and Modulates TrkB Receptor Expression in a 5XFAD Mouse Model

ijms-logo

“Alzheimer’s disease (AD) is the most common form of dementia, but there is still no available treatment.

Δ9-tetrahydrocannabinol (THC) is emerging as a promising therapeutic agent. Using THC in conventional high doses may have deleterious effects. Therefore, we propose to use an ultra-low dose of THC (ULD-THC). We previously published that a single injection of ULD-THC ameliorated cognitive functioning in several models of brain injuries as well as in naturally aging mice.

Here, 5xFAD AD model mice received a single treatment of ULD-THC (0.002 mg/kg) after disease onset and were examined in two separate experiments for cognitive functions, neurotropic, and inflammatory factors in the hippocampus.

We show that a single injection of ULD-THC alleviated cognitive impairments in 6- and 12-month-old 5xFAD mice. On the biochemical level, our results indicate an imbalance between the truncated TrkB receptor isoform and the full receptor, with AD mice showing a greater tendency to express the truncated receptor, and ULD-THC improved this imbalance. We also investigated the expression of three AD-related inflammatory markers and found an ameliorating effect of ULD-THC.

The current research demonstrates for the first time the beneficial effects of a single ultra-low dose of THC in a mouse model of AD after disease onset.”

https://pubmed.ncbi.nlm.nih.gov/36012711/

“The current research demonstrates for the first time the beneficial effects of a single ultra-low dose of THC in a mouse model of AD after disease onset. As THC is a cheap, widely available substance already approved for use in other conditions, this research brings us closer to understanding its mechanisms and will possibly lead to new treatments.”

https://www.mdpi.com/1422-0067/23/16/9449/htm

Interacting binding insights and conformational consequences of the differential activity of cannabidiol with two endocannabinoid-activated G-protein-coupled receptors

“Cannabidiol (CBD), the major non-psychoactive phytocannabinoid present in the plant Cannabis sativa, has displayed beneficial pharmacological effects in the treatment of several neurological disorders including, epilepsy, Parkinson’s disease, and Alzheimer’s disease. In particular, CBD is able to modulate different receptors in the endocannabinoid system, some of which belong to the family of G-protein-coupled receptors (GPCRs). Notably, while CBD is able to antagonize some GPCRs in the endocannabinoid system, it also seems to activate others. The details of this dual contrasting functional feature of CBD, that is, displaying antagonistic and (possible) agonistic ligand properties in related receptors, remain unknown. Here, using computational methods, we investigate the interacting determinants of CBD in two closely related endocannabinoid-activated GPCRs, the G-protein-coupled receptor 55 (GPR55) and the cannabinoid type 1 receptor (CB1). While in the former, CBD has been demonstrated to function as an antagonist, the way by which CBD modulates the CB1 receptor remains unclear. Namely, CBD has been suggested to directly trigger receptor’s activation, stabilize CB1 inactive conformations or function as an allosteric modulator. From microsecond-length unbiased molecular dynamics simulations, we found that the presence of the CBD ligand in the GPR55 receptor elicit conformational changes associated with antagonist-bound GPCRs. In contrast, when the GPR55 receptor is simulated in complex with the selective agonist ML186, agonist-like conformations are sampled. These results are in agreement with the proposed modulatory function of each ligand, showing that the computational techniques utilized to characterize the GPR55 complexes correctly differentiate the agonist-bound and antagonist-bound systems. Prompted by these results, we investigated the role of the CBD compound on the CB1 receptor using similar computational approaches. The all-atom MD simulations reveal that CBD induces conformational changes linked with agonist-bound GPCRs. To contextualize the results we looked into the CB1 receptor in complex with a well-established antagonist. In contrast to the CBD/CB1 complex, when the CB1 receptor is simulated in complex with the ligand antagonist AM251, inactive conformations are explored, showing that the computational techniques utilized to characterize the CB1 complexes correctly differentiate the agonist-bound and antagonist-bound systems. In addition, our results suggest a previously unknown sodium-binding site located in the extracellular domain of the CB1 receptor. From our detailed characterization, we found particular interacting loci in the binding sites of the GPR55 and the CB1 receptors that seem to be responsible for the differential functional features of CBD. Our work will pave the way for understanding the CBD pharmacology at a molecular level and aid in harnessing its potential therapeutic use.”

https://pubmed.ncbi.nlm.nih.gov/36016551/

https://www.frontiersin.org/articles/10.3389/fphar.2022.945935/full

Neuroprotection of Cannabidiol, Its Synthetic Derivatives and Combination Preparations against Microglia-Mediated Neuroinflammation in Neurological Disorders

molecules-logo

“The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines.

Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer’s disease.

A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD’s effects on neuroinflammation appear to be complex and are poorly understood.

This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-β-JAK-STAT pathways. We also illustrate the pharmacological action of CBD’s derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules.

The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components.”

https://pubmed.ncbi.nlm.nih.gov/35956911/

“Cannabinoids are a group of terpenophenolic compounds derived from the Cannabis sativa L. plant. The preclinical studies summarised in this review supported the therapeutic use of CBD in treating neurological disorders from its action in addressing microglia-mediated neuroinflammation. The findings of this review shed light on the development of CBD and relevant compounds as novel and more advantageous therapeutics to prevent or treat neurological disorders by targeting microglia-mediated neuroinflammation.”

https://www.mdpi.com/1420-3049/27/15/4961/htm


Dose-Dependent Antidepressant-Like Effects of Cannabidiol in Aged Rats

Frontiers - Crunchbase Company Profile & Funding

“Aging predisposes to late-life depression and since antidepressants are known to change their efficacy with age, novel treatment options are needed for our increased aged population. In this context, the goal of the present study was to evaluate the potential antidepressant-like effect of cannabidiol in aged rats.

For this purpose, 19-21-month-old Sprague-Dawley rats were treated for 7 days with cannabidiol (dose range: 3-30 mg/kg) and scored under the stress of the forced-swim test. Hippocampal cannabinoid receptors and cell proliferation were evaluated as potential molecular markers underlying cannabidiol’s actions.

The main results of the present study demonstrated that cannabidiol exerted a dose-dependent antidepressant-like effect in aged rats (U-shaped, effective at the intermediate dose of 10 mg/kg as compared to the other doses tested), without affecting body weight. None of the molecular markers analyzed in the hippocampus were altered by cannabidiol’s treatment.

Overall, this study demonstrated a dose-dependent antidepressant-like response for cannabidiol at this age-window (aged rats up to 21 months old) and in line with other studies suggesting a beneficial role for this drug in age-related behavioral deficits.”

https://pubmed.ncbi.nlm.nih.gov/35847003/

“In conclusion, this study increased the age-window at which cannabidiol exerted dose-dependent responses in this behavioral test, to include aged rats (up to 21 months old), at which it could be considered as a potential antidepressant, and in line with other studies suggesting a beneficial role for this drug in age-related behavioral deficits.”

https://www.frontiersin.org/articles/10.3389/fphar.2022.891842/full


Endocannabinoid Modulation in Neurodegenerative Diseases: In Pursuit of Certainty

biology-logo

“Neurodegenerative diseases are an increasing cause of global morbidity and mortality. They occur in the central nervous system (CNS) and lead to functional and mental impairment due to loss of neurons. Recent evidence highlights the link between neurodegenerative and inflammatory diseases of the CNS. These are typically associated with several neurological disorders. These diseases have fundamental differences regarding their underlying physiology and clinical manifestations, although there are aspects that overlap.

The endocannabinoid system (ECS) is comprised of receptors (type-1 (CB1R) and type-2 (CB2R) cannabinoid-receptors, as well as transient receptor potential vanilloid 1 (TRPV1)), endogenous ligands and enzymes that synthesize and degrade endocannabinoids (ECBs). Recent studies revealed the involvement of the ECS in different pathological aspects of these neurodegenerative disorders.

The present review will explore the roles of cannabinoid receptors (CBRs) and pharmacological agents that modulate CBRs or ECS activity with reference to Alzheimer’s Disease (AD), Parkinson’s Disease (PD), Huntington’s Disease (HD) and multiple sclerosis (MS).”

https://pubmed.ncbi.nlm.nih.gov/35336814/

“Neurodegenerative diseases represent an important cause of morbidity and mortality worldwide. Existing therapeutic options are limited and focus mostly on improving symptoms and reducing exacerbations. The endocannabinoid system is involved in the pathophysiology of such disorders, an idea which has been highlighted by recent scientific work. The current work focusses its attention on the importance and implications of this system and its synthetic and natural ligands in disorders such as Alzheimer’s, Parkinson’s, Huntington’s and multiple sclerosis.”

https://www.mdpi.com/2079-7737/11/3/440/htm


Impact of the cannabinoid system in Alzheimer’s diseases

Generic placeholder image

“Cannabinoids are compounds that were initially isolated from cannabis marihuana and are also widely present in both nervous and immune systems of animals.

In recent years, with in-depth research on cannabinoids, their clinical medicinal value has been evaluated, and many exciting achievements have been continuously accumulating, especially in the field of neurodegenerative disease.

Alzheimer’s disease is the most common type of neurodegenerative disease that causes dementia and has become a global health problem that seriously impacts human health today.

In this review, we discuss the therapeutic potential of cannabinoids for the treatment of Alzheimer’s disease.

How cannabinoids act on different endocannabinoid receptor subtypes to regulate Alzheimer’s disease, the roles of the endocannabinoid system in Alzheimer’s disease are outlined, and the underlying mechanisms are discussed.

Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to Alzheimer’s disease and discuss the potential usefulness of cannabinoids in the clinical treatment of Alzheimer’s disease.”

https://pubmed.ncbi.nlm.nih.gov/35105293/

https://www.eurekaselect.com/article/120593