Medical Marijuana-Opportunities and Challenges

“Over the recent years, public and political opinions have demonstrated increasing support for the legalization of medical marijuana.

To date, 24 states as well as the District of Columbia have legalized cannabis for medical use, 4 states have legalized the recreational use of Marijuana.

Marijuana is derived from the hemp plant Cannabis sativa. Δ-9-tetrahydrocannabinol (THC) is the major psychoactive constituent of cannabis, while cannabidiol (CBD) is the major non-psychoactive constituent. THC is a partial agonist at CB1 and CB2 receptors, while CBD at high levels is an antagonist CB1 and CB2.

CB1 is abundantly expressed in the brain, and CB2 is expressed on immune cells (expression of CB2 on neurons remains controversial). The brain also produces endogenous cannabis-like substances (endocannabinoids) that bind and activate the CB1/CB2 receptors.

There is tremendous interest in harnessing the therapeutic potential of plant-derived and synthetic cannabinoids.

This Editorial provides an overview of diseases that may be treated by cannabinoids.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948749/

Cannabigerol is a novel, well-tolerated appetite stimulant in pre-satiated rats.

 

“The appetite-stimulating properties of cannabis are well documented and have been predominantly attributed to the hyperphagic activity of the psychoactive phytocannabinoid, ∆9-tetrahydrocannabinol (∆9-THC).

However, we have previously shown that a cannabis extract devoid of ∆9-THC still stimulates appetite, indicating that other phytocannabinoids also elicit hyperphagia. One possible candidate is the non-psychoactive phytocannabinoid cannabigerol (CBG), which has affinity for several molecular targets with known involvement in the regulation of feeding behaviour.

CBG produced no adverse effects on any parameter in the neuromotor tolerability test battery. In the feeding assay, 120-240 mg/kg CBG more than doubled total food intake and increased the number of meals consumed, and at 240 mg/kg reduced latency to feed. However, the sizes or durations of individual meals were not significantly increased.

CONCLUSIONS:

Here, we demonstrate for the first time that CBG elicits hyperphagia, by reducing latency to feed and increasing meal frequency, without producing negative neuromotor side effects. Investigation of the therapeutic potential of CBG for conditions such as cachexia and other disorders of eating and body weight regulation is thus warranted.”

http://www.ncbi.nlm.nih.gov/pubmed/27503475

Mice Expressing a “Hyper-Sensitive” Form of the Cannabinoid Receptor 1 (CB1) Are Neither Obese Nor Diabetic.

“Multiple lines of evidence implicate the endocannabinoid signaling system in the modulation of metabolic disease.

Genetic or pharmacological inactivation of CB1 in rodents leads to reduced body weight, resistance to diet-induced obesity, decreased intake of highly palatable food, and increased energy expenditure.

Cannabinoid agonists stimulate feeding in rodents and increased levels of endocannabinoids can disrupt lipid metabolism. Therefore, the hypothesis that sustained endocannabinoid signaling can lead to obesity and diabetes was examined in this study using S426A/S430A mutant mice expressing a desensitization-resistant CB1 receptor.

These mice display exaggerated and prolonged responses to acute administration of phytocannabinoids, synthetic cannabinoids, and endocannabinoids. As a consequence these mice represent a novel model for determining the effect of enhanced endocannabinoid signaling on metabolic disease.

Our results indicate that S426A/S430A mutant mice expressing the desensitization-resistant form of CB1 do not exhibit differences in body weight, food intake, glucose homeostasis, or re-feeding following a fast.”

http://www.ncbi.nlm.nih.gov/pubmed/27501235

Association between cerebral cannabinoid 1 receptor availability and body mass index in patients with food intake disorders and healthy subjects: a [18F]MK-9470 PET study.

“Although of great public health relevance, the mechanisms underlying disordered eating behavior and body weight regulation remain insufficiently understood.

Compelling preclinical evidence corroborates a critical role of the endocannabinoid system (ECS) in the central regulation of appetite and food intake.  However, in vivo human evidence on ECS functioning in brain circuits involved in food intake regulation as well as its relationship with body weight is lacking, both in health and disease.

Here, we measured cannabinoid 1 receptor (CB1R) availability using positron emission tomography (PET) with [18F]MK-9470 in 54 patients with food intake disorders (FID) covering a wide body mass index (BMI) range (anorexia nervosa, bulimia nervosa, functional dyspepsia with weight loss and obesity; BMI range=12.5-40.6 kg/m2) and 26 age-, gender- and average BMI-matched healthy subjects (BMI range=18.5-26.6 kg/m2).

The association between regional CB1R availability and BMI was assessed within predefined homeostatic and reward-related regions of interest using voxel-based linear regression analyses. CB1R availability was inversely associated with BMI in homeostatic brain regions such as the hypothalamus and brainstem areas in both patients with FID and healthy subjects. However, in FID patients, CB1R availability was also negatively correlated with BMI throughout the mesolimbic reward system (midbrain, striatum, insula, amygdala and orbitofrontal cortex), which constitutes the key circuit implicated in processing appetitive motivation and hedonic value of perceived food rewards.

Our results indicate that the cerebral homeostatic CB1R system is inextricably linked to BMI, with additional involvement of reward areas under conditions of disordered body weight.”

http://www.ncbi.nlm.nih.gov/pubmed/27404285

Association between plasma endocannabinoids and appetite in hemodialysis patients: A pilot study.

“Uremia-associated anorexia may be related to altered levels of long chain n-6 and n-3 polyunsaturated fatty acid (PUFA) derived circulating endocannabinoids (EC) and EC-like compounds that are known to mediate appetite. Our study’s hypothesis was that such molecules are associated with appetite in patients with end-stage renal disease. A cross-sectional observational study was performed in 20 chronic hemodialysis patients (9 females, 11 males) and 10 healthy female controls in whom appetite was assessed using the Simplified Nutritional Appetite Questionnaire (SNAQ) and blood drawn in the fasting (and when applicable) pre-dialysis state. Blood levels of PUFA and EC were also measured. Higher blood levels of the long chain n-6 fatty acid 20:4n6 (arachidonic acid) and lower levels of the long chain n-3 fatty acid 20:5n3 (eicosapentaenoic acid) were observed in female hemodialysis patients compared to controls. No differences were observed between male and female patients. In female study participants strong correlations between specific EC-like compounds and total SNAQ scores were noted, including with the n-6 PUFA derived linoleoyl ethanolamide (L-EA; ρ=-0.60, P<.01) and the n-3 PUFA derived docosahexaenoyl ethanolamide (DH-EA; ρ=0.63, P<.01). The L-EA:DH-EA ratio was most strongly associated with the SNAQ score (ρ=-0.74, P≤.001), and its questions associated with appetite (ρ=-0.69, P≤.01) and satiety (ρ=-0.81, P≤.001). These findings support a link between circulating EC and appetite in hemodialysis patients.”

http://www.ncbi.nlm.nih.gov/pubmed/27333956

Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems.

“Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed.”

http://www.ncbi.nlm.nih.gov/pubmed/27136126

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Cannabidiol-2′,6′-dimethyl ether stimulates body weight gain in apolipoprotein E-deficient BALB/c. KOR/Stm Slc-Apoe(shl) mice.

“The biological activities of cannabidiol (CBD), a major non-psychotropic constituent of the fiber-type cannabis plant, have been examined in detail (e.g., CBD modulation of body weight in mice and rats).

However, few studies have investigated the biological activities of cannabidiol-2′,6′-dimethyl ether (CBDD), a dimethyl ether derivative of the parent CBD.

We herein focused on the effects of CBDD on body weight changes in mice, and demonstrated that it stimulated body weight gain in apolipoprotein E (ApoE)-deficient BALB/c. KOR/Stm Slc-Apoe(shl) mice, especially between 10 and 20 weeks of age.”

http://www.ncbi.nlm.nih.gov/pubmed/26558454

Endocannabinoids and Metabolic Disorders.

“The endocannabinoid system (ECS) is known to exert regulatory control on essentially every aspect related to the search for, and the intake, metabolism and storage of calories, and consequently it represents a potential pharmacotherapeutic target for obesity, diabetes and eating disorders.

While the clinical use of the first generation of cannabinoid type 1 (CB1) receptor blockers has been halted due to the psychiatric side effects that their use occasioned, recent research in animals and humans has provided new knowledge on the mechanisms of actions of the ECS in the regulation of eating behavior, energy balance, and metabolism.

In this review, we discuss these recent advances and how they may allow targeting the ECS in a more specific and selective manner for the future development of therapies against obesity, metabolic syndrome, and eating disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26408168

Therapeutic potential of cannabis-related drugs.

“In this review, I will consider the dual nature of Cannabis and cannabinoids.

The duality arises from the potential and actuality of cannabinoids in the laboratory and clinic and the ‘abuse’ of Cannabis outside the clinic.

The therapeutic areas currently best associated with exploitation of Cannabis-related medicines include pain, epilepsy, feeding disorders, multiple sclerosis and glaucoma.

As with every other medicinal drug of course, the ‘trick’ will be to maximise the benefit and minimise the cost.

After millennia of proximity and exploitation of the Cannabis plant, we are still playing catch up with an understanding of its potential influence for medicinal benefit.”

http://www.ncbi.nlm.nih.gov/pubmed/26216862