Integrating endocannabinoid signaling in the regulation of anxiety and depression

Image result for aps (acta pharmacologica sinica)

“Brain endogenous cannabinoid (eCB) signaling seems to harmonize appropriate behavioral responses, which are essential for the organism’s long-term viability and homeostasis. Dysregulation of eCB signaling contributes to negative emotional states and increased stress responses. An understanding of the underlying neural cell populations and neural circuit regulation will enable the development of therapeutic strategies to mitigate behavioral maladaptation and provide insight into the influence of eCB on the neural circuits involved in anxiety and depression. This review focuses on recent evidence that has added a new layer of complexity to the idea of targeting the eCB system for therapeutic benefits in neuropsychiatric disease and on the future research direction of neural circuit modulation.” 

https://www.nature.com/articles/s41401-018-0051-5

Evidence for the use of “medical marijuana” in psychiatric and neurologic disorders.

College of Psychiatric and Neurologic Pharmacists

“Cannabis is listed as a Schedule I substance under the Controlled Substances Act of 1970, meaning the US federal government defines it as an illegal drug that has high potential for abuse and no established medical use; however, half of the states in the nation have enacted “medical marijuana” (MM) laws. Clinicians must be aware of the evidence for and against the use of MM in their patients who may consider using this substance.

RESULTS:

Publications were identified that included patients with dementia, multiple sclerosis, Parkinson disease, Huntington disease, schizophrenia, social anxiety disorder, depression, tobacco use disorder, and neuropathic pain.

DISCUSSION:

There is great variety concerning which medical conditions are approved for treatment with MM for either palliative or therapeutic benefit, depending on the state law. It is important to keep an evidence-based approach in mind, even with substances considered to be illegal under US federal law. Clinicians must weigh risks and benefits of the use of MM in their patients and should ensure that patients have tried other treatment modalities with higher levels of evidence for use when available and appropriate.”

https://www.ncbi.nlm.nih.gov/pubmed/29955495

““Medical marijuana” encompasses everything from whole-plant cannabis to synthetic cannabinoids available for commercial use approved by regulatory agencies. In determining whether MM is of clinical utility to our patients, it is important to keep in mind chemical constituents, dose, delivery, and indication. Selection of the patient appropriate for MM must be carefully considered because clinical guidelines and treatment options with stronger levels of evidence should be exhausted first in most cases. There seems to be strongest evidence for the use of MM in patients with MS and in patients with neuropathic pain; moderate evidence exists to support further research in social anxiety disorder, schizophrenia, PD, and tobacco use disorder; evidence is limited for use in patients with dementia, Huntington disease, depression, and anorexia.”

http://mhc.cpnp.org/doi/10.9740/mhc.2017.01.029?code=cpnp-site

The Lateral Habenula Directs Coping Styles Under Conditions of Stress Via Recruitment of the Endocannabinoid System.

Biological Psychiatry Home

“The ability to effectively cope with stress is a critical determinant of disease susceptibility.

The lateral habenula (LHb) and the endocannabinoid (ECB) system have independently been shown to be involved in the selection of stress coping strategies, yet the role of ECB signaling in the LHb remains unknown.

CONCLUSIONS:

Alterations in LHb ECB signaling may be relevant for development of stress-related pathologies in which LHb dysfunction and stress-coping impairments are hallmark symptoms.”

https://www.ncbi.nlm.nih.gov/pubmed/29887035

https://www.biologicalpsychiatryjournal.com/article/S0006-3223(18)31473-2/fulltext

“Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood.” https://www.ncbi.nlm.nih.gov/pubmed/27317195

Pharmacological properties of cannabidiol in the treatment of psychiatric disorders: a critical overview.

Image result for cambridge university press

“Cannabidiol (CBD) represents a new promising drug due to a wide spectrum of pharmacological actions. In order to relate CBD clinical efficacy to its pharmacological mechanisms of action, we performed a bibliographic search on PUBMED about all clinical studies investigating the use of CBD as a treatment of psychiatric symptoms.

Findings to date suggest that (a) CBD may exert antipsychotic effects in schizophrenia mainly through facilitation of endocannabinoid signalling and cannabinoid receptor type 1 antagonism; (b) CBD administration may exhibit acute anxiolytic effects in patients with generalised social anxiety disorder through modification of cerebral blood flow in specific brain sites and serotonin 1A receptor agonism; (c) CBD may reduce withdrawal symptoms and cannabis/tobacco dependence through modulation of endocannabinoid, serotoninergic and glutamatergic systems; (d) the preclinical pro-cognitive effects of CBD still lack significant results in psychiatric disorders.

In conclusion, current evidences suggest that CBD has the ability to reduce psychotic, anxiety and withdrawal symptoms by means of several hypothesised pharmacological properties. However, further studies should include larger randomised controlled samples and investigate the impact of CBD on biological measures in order to correlate CBD’s clinical effects to potential modifications of neurotransmitters signalling and structural and functional cerebral changes.”

https://www.ncbi.nlm.nih.gov/pubmed/29789034

https://www.cambridge.org/core/journals/epidemiology-and-psychiatric-sciences/article/pharmacological-properties-of-cannabidiol-in-the-treatment-of-psychiatric-disorders-a-critical-overview/D7FD68F40CF30CBB48A1025C66873F26

Repeated social defeat-induced neuroinflammation, anxiety-like behavior and resistance to fear extinction were attenuated by the cannabinoid receptor agonist WIN55,212-2.

Image result for neuropsychopharmacology

“Psychosocial stress contributes to the development of psychiatric disorders. Repeated social defeat (RSD) is a murine stressor that causes a release of inflammatory monocytes into circulation. Moreover, RSD-induced anxiety-like behavior is dependent on the recruitment of these monocytes to the brain.

Activation of the endocannabinoid (ECB) system may modulate both neuroendocrine and inflammatory responses mediated by stress. Therefore, we hypothesized that a cannabinoid receptor agonist would attenuate RSD-induced inflammation, anxiety, and stress sensitization.

In conclusion, activation of cannabinoid receptors limited the immune and neuroinflammatory responses to RSD and reversed the short-term and long-term behavioral deficits associated with RSD.”

https://www.ncbi.nlm.nih.gov/pubmed/29786066

https://www.nature.com/articles/s41386-018-0064-2

Review of the neurological benefits of phytocannabinoids.

Logo of sni

“Numerous physical, psychological, and emotional benefits have been attributed to marijuana since its first reported use in 2,600 BC in a Chinese pharmacopoeia. The phytocannabinoids, cannabidiol (CBD), and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied extracts from cannabis sativa subspecies hemp and marijuana. CBD and Δ9-THC interact uniquely with the endocannabinoid system (ECS). Through direct and indirect actions, intrinsic endocannabinoids and plant-based phytocannabinoids modulate and influence a variety of physiological systems influenced by the ECS.

METHODS:

In 1980, Cunha et al. reported anticonvulsant benefits in 7/8 subjects with medically uncontrolled epilepsy using marijuana extracts in a phase I clinical trial. Since then neurological applications have been the major focus of renewed research using medical marijuana and phytocannabinoid extracts.

RESULTS:

Recent neurological uses include adjunctive treatment for malignant brain tumors, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, neuropathic pain, and the childhood seizure disorders Lennox-Gastaut and Dravet syndromes. In addition, psychiatric and mood disorders, such as schizophrenia, anxiety, depression, addiction, postconcussion syndrome, and posttraumatic stress disorders are being studied using phytocannabinoids.

CONCLUSIONS:

In this review we will provide animal and human research data on the current clinical neurological uses for CBD individually and in combination with Δ9-THC. We will emphasize the neuroprotective, antiinflammatory, and immunomodulatory benefits of phytocannabinoids and their applications in various clinical syndromes.”

https://www.ncbi.nlm.nih.gov/pubmed/29770251

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938896/

Deficient endocannabinoid signaling in the central amygdala contributes to alcohol dependence-related anxiety-like behavior and excessive alcohol intake.

Image result for neuropsychopharmacology

“Negative emotional states that are associated with excessive alcohol intake, particularly anxiety-like states, have been linked to opponent processes in the central nucleus of the amygdala (CeA), affecting stress-related transmitters and monoamines.

This study extends these observations to include endocannabinoid signaling in alcohol-dependent animals.

Rats and mice were exposed to chronic intermittent alcohol with vapor inhalation or liquid diet to induce dependence. In vivo microdialysis was used to estimate interstitial concentrations of endocannabinoids [N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG)] and amino acids (glutamate and GABA) in rat CeA. Additionally, we evaluated the inhibition of endocannabinoids clearance enzymes [monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase] on anxiety-like behavior and alcohol consumption in alcohol-dependent rats and mice.

Results revealed that alcohol dependence produced decreases in baseline 2-AG dialysate levels and increases in baseline levels of glutamate and GABA. Acute alcohol abstinence induced an enhancement of these dependence-induced effects and the levels of 2-AG and GABA were restored upon alcohol re-exposure. Additional studies showed that the increased CeA 2-AG levels induced by restraint stress and alcohol self-administration were blunted in alcohol-dependent rats. Pharmacological studies in rats and mice showed that anxiety-like behavior and alcohol consumption were increased in alcohol-dependent animals, and these behavioral effects were attenuated mainly by MAGL inhibitors [MJN110 (10 and 20 mg/kg) in rats and JZL184 (1 and 3 mg/kg) in mice].

The present results suggest a key role for endocannabinoid signaling in motivational neuroadaptations during alcohol dependence, in which a deficiency in CeA 2-AG signaling in alcohol-dependent animals is linked to stress and excessive alcohol consumption.”

https://www.ncbi.nlm.nih.gov/pubmed/29748627

https://www.nature.com/articles/s41386-018-0055-3

Adolescent chronic mild stress alters hippocampal CB1 receptor-mediated excitatory neurotransmission and plasticity

Logo of nihpa

“Endocannabinoids (eCBS) are involved in the stress response and alterations in eCB signaling may contribute to the etiology of mood disorders.

Exposure to chronic mild stress (CMS), a model of depression, produces downregulation of the CB1 receptor (CB1) in the hippocampus of male rats.

These results effectively demonstrate that CMS significantly alters hippocampal eCB-mediated neurotransmission and synaptic plasticity.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827785/

Deficiency in endocannabinoid signaling in the nucleus accumbens induced by chronic unpredictable stress.

Image result for neuropsychopharmacology

“The nucleus accumbens (NAc) is a critical component of the reward circuitry, and dysfunction of the NAc may account for anhedonia and other symptoms of depression.

The endocannabinoid (eCB) system regulates mood, emotion, motivation, appetite, body weight, and cognition.

Here, we investigated whether alterations in endocannabinoid (eCB) signaling in the NAc contribute to depression-like behaviors induced by chronic unpredictable stress (CUS) in mice.

These results suggest that downregulation of eCB signaling in the NAc occurs after CUS and contributes to the pathophysiology of depression.”

A Naturalistic Examination of the Perceived Effects of Cannabis on Negative Affect

Cover image

“Cannabis is commonly used to alleviate symptoms of negative affect. However, a paucity of research has examined the acute effects of cannabis on negative affect in everyday life.

The current study provides a naturalistic account of perceived changes in symptoms of depression, anxiety, and stress as a function of dose and concentration of Δ9tetrahydrocannabinol (THC) and cannabidiol (CBD).

Cannabis is commonly used to alleviate depression, anxiety, and stress. Indeed, one of the most commonly reported motives for cannabis use is to cope with stress, with 72% of daily cannabis users reporting use of cannabis to relax or relieve tension.

Results from the present study indicate that medical cannabis users report a substantial and significant reduction in symptoms of negative affect shortly after using cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/29656267

https://www.sciencedirect.com/science/article/pii/S0165032718303100