Effects of intra-infralimbic prefrontal cortex injections of cannabidiol in the modulation of emotional behaviors in rats: contribution of 5HT1A receptors and stressful experiences.

“The infralimbic (IL) and prelimbic (PL) regions of the prefrontal cortex are involved in behavioral responses observed during defensive reactions.

Intra-PL or IL injections of cannabidiol (CBD), a major non-psychotomimetic cannabinoid present in the Cannabis sativa plant, result in opposite behavioral effects in the contextual fear conditioning (CFC) paradigm…

Together these results indicate that CBD effects in the IL depend on the nature of the animal model, being influenced by previous stressful experiences and mediated by facilitation of 5HT1A receptors-mediated neurotransmission.”

http://www.ncbi.nlm.nih.gov/pubmed/25701682

Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: additional evidence.

“Endocannabinoids (ECBs) such as anandamide (AEA) act by activating cannabinoid type 1 (CB1) or 2 (CB2) receptors. The anxiolytic effect of drugs that facilitate ECB effects is associated with increase in AEA levels in several encephalic areas, including the prefrontal cortex (PFC).

Activation of CB1 receptors by CB1 agonists injected directly into these areas is usually anxiolytic.

However, depending on the encephalic region being investigated and on the stressful experiences, opposite effects were observed, as reported in the ventral HIP. In addition, contradictory results have been reported after CB1 activation in the dorsal HIP (dHIP).

Therefore, in the present paper we have attempted to verify if directly interfering with ECB metabolism/reuptake in the prelimbic (PL) portion of the medial PFC (MPFC) and dHIP would produce different effects in two conceptually distinct animal models: the elevated plus maze (EPM) and the Vogel conflict test (VCT).

We observed drugs which interfere with ECB reuptake/metabolism in both the PL and in the dentate gyrus of the dHIP induced anxiolytic-like effect, in both the EPM and in the VCT via CB1 receptors, suggesting CB1 signaling in these brain regions modulate defensive responses to both innate and learned threatening stimuli.

This data further strengthens previous results indicating modulation of hippocampal and MPFC activity via CB1 by ECBs, which could be therapeutically targeted to treat anxiety disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/25595265

http://www.thctotalhealthcare.com/category/anxiety-2/

Anti-aversive role of the endocannabinoid system in the periaqueductal gray stimulation model of panic attacks in rats.

“Direct activation of the cannabinoid CB1 receptor in the dorsolateral periaqueductal gray (dlPAG) inhibits anxiety- and panic-related behaviours in experimental animals. It has remained unclear, however, whether the local endocannabinoid signalling is recruited as a protective mechanism against aversive stimuli.

The present study tested the hypothesis that the endocannabinoid system counteracts aversive responses in the dlPAG-stimulation model of panic attacks…

The endocannabinoid system in the dlPAG attenuates the behavioural, cellular and cardiovascular consequences of aversive stimuli. This process may be considered for the development of additional treatments against panic and other anxiety-related disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/25388290

http://www.thctotalhealthcare.com/category/panic-attack/

University Of Saskatchewan Research Suggests Marijuana Analogue Stimulates Brain Cell Growth

ScienceDaily: Your source for the latest research news

“A synthetic substance similar to ones found in marijuana stimulates cell growth in regions of the brain associated with anxiety and depression, pointing the way for new treatments for these diseases, according to University of Saskatchewan medical research published today in The Journal of Clinical Investigation.

Xia Zhang, an associate professor in the U of S neuropsychiatry research unit, led the team that tested the effects of HU-210, a potent synthetic cannabinoid similar to a group of compounds found in marijuana. The synthetic version is about 100 times as powerful as THC, the compound responsible for the high experienced by recreational users.

The team found that rats treated with HU-210 on a regular basis showed neurogenesis – the growth of new brain cells in the hippocampus. This region of the brain is associated with learning and memory, as well as anxiety and depression.

The effect is the opposite of most legal and illicit drugs such as alcohol, nicotine, heroin, and cocaine.

“Most ‘drugs of abuse’ suppress neurogenesis,” Zhang says. “Only marijuana promotes neurogenesis.””

http://www.sciencedaily.com/releases/2005/10/051016083817.htm

“Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects… In summary, since adult hippocampal neurogenesis is suppressed following chronic administration of opiates, alcohol, nicotine, and cocaine, the present study suggests that cannabinoids are the only illicit drug that can promote adult hippocampal neurogenesis following chronic administration.”  http://www.jci.org/articles/view/25509

The endocannabinoid system modulates stress, emotionality, and inflammation.

“The physiological and behavioral effects of stress are well characterized.

Endocannabinoids are produced on demand and function to attenuate many of the physiological effects of the stress response.

The endocannabinoid system is made up of cannabinoid receptors, the fatty acid signaling molecules that bind to and activate these receptors, and the enzymes that synthesize and catabolize these endocannabinoid signaling molecules.

Cannabinoid research has recently grown substantially, due in no small part to the development of genetic research models as well as highly selective pharmaceutical tools.

The purpose of this minireview is to discuss a subset of the many parallels between cannabinoid and behavioral neuroimmunology research, with specific discussion of interactions between the endocannabinoid system and psychological stress, emotionality, and inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/24953427

Medical Marijuana Helps Cure Chronic Disease

Medical Marijuana Helps Cure Chronic Disease

“The medicinal power of Marijuana is well documented throughtout history

Back in 2700 BC, According to Chinese lore, the Emperor Shen Nung, considered the Father of Chinese medicine, in 2700 BC ,discovered the healing properties of Marijuana as well as Ginseng and Ephedra.

Throughout recorded history, the use of Medical Marijuana  has been linked to the ancient Egyptians, Persians, Greek civilizations, George Washington, Queen Victoria and even mainstream medicine by the 1840s.

From the 1850s to Y 1942, Marijuana was listed in the United States Pharmacopeia, an official public standards-setting authority for all prescription and over-the counter medicines, as a treatment for tetanus, cholera, rabies, dysentery, alcoholism, opiate addiction, convulsive disorders, insanity, excessive menstrual bleeding and many other health problems. My father was a Dental doctor and had a license to dispense the drug, pharmacies carried it back then.

During that same time frame prohibition gained popularity, that along with a growing “faith” in federal government.

By Y 1937, the United States passed its 1st federal law against Marijuana despite objections by the American Medical Association (AMA).

In fact, Dr. William C. Woodward, testifying on behalf of the AMA, told the US Congress:

“The American Medical Association knows of no evidence that Marijuana is a dangerous drug.”

He warned that a prohibition “loses sight of the fact that future investigation may show that there are substantial medical uses for Cannabis.”

Today, we see a growing trend of acceptance of Marijuana for its medicinal purposes.

Dr. Sanjay Gupta, CNN’s chief medical correspondent, reversed his Y 2009 opinion against Marijuana when he said, “We have been terribly and systematically misled for nearly 70 yrs in the United States, and I apologize for my own role in that.”

Now people including lawmakers are seeing the legalization of Marijuana in states like Colorado and Washington for “recreational” purposes. Most Americans are in favor of Medical Marijuana,  and the legalization of this drug.

The Big Q: why does the federal government want to ban its usage?

The Big A: it is all about control and money, and there is a major market for it, plus it poses a major threat to the pharmaceutical industry.

Below are just a few of the many health benefits associated with Medical Marijuana:

1. It can stop HIV from spreading throughout the body.
2. It slows the progression of Alzheimer’s.
3. It slows the spread of cancer cells.
4. It is an active pain reliever.
5. It can prevent or help with opiate addiction.
6. It combats depression, anxiety and ADHD.
7. It can treat epilepsy and Tourette’s.
8. It can help with other neurological damage, such as concussions and strokes.
9. It can prevent blindness from glaucoma.
10. Its connected to lower insulin levels in diabetics.

Contrary to popular notions, many patients  experience health benefits from Medical Marijuana without “getting stoned.””

http://www.livetradingnews.com/medical-marijuana-helps-cure-chronic-disease-55569.htm#.U6VjgZRX-uY

Therapeutic benefits of cannabis: a patient survey.

“Clinical research regarding the therapeutic benefits of cannabis (“marijuana”) has been almost non-existent in the United States since cannabis was given Schedule I status in the Controlled Substances Act of 1970.

In order to discover the benefits and adverse effects perceived by medical cannabis patients, especially with regards to chronic pain, we hand-delivered surveys to one hundred consecutive patients who were returning for yearly re-certification for medical cannabis use in Hawai’i. The response rate was 94%. Mean and median ages were 49.3 and 51 years respectively. Ninety-seven per cent of respondents used cannabis primarily for chronic pain. Average pain improvement on a 0-10 pain scale was 5.0 (from 7.8 to 2.8), which translates to a 64% relative decrease in average pain. Half of all respondents also noted relief from stress/anxiety, and nearly half (45%) reported relief from insomnia. Most patients (71%) reported no adverse effects, while 6% reported a cough or throat irritation and 5% feared arrest even though medical cannabis is legal in Hawai’i.

No serious adverse effects were reported.

These results suggest that Cannabis is an extremely safe and effective medication for many chronic pain patients. Cannabis appears to alleviate pain, insomnia, and may be helpful in relieving anxiety.

Cannabis has shown extreme promise in the treatment of numerous medical problems and deserves to be released from the current Schedule I federal prohibition against research and prescription.”

http://www.ncbi.nlm.nih.gov/pubmed/24765558

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998228/

Antipsychotic profile of cannabidiol and rimonabant in an animal model of emotional context processing in schizophrenia.

“Clinical and neurobiological findings suggest that cannabinoids and their receptors are implicated in schizophrenia. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has been reported to have central therapeutic actions, such as antipsychotic and anxiolytic effects…

Our results suggest a potential therapeutical effect of CBD and rimonabant to treat the emotional processing impairment presented in schizophrenia.

In addition, our results reinforce the anxiolytic profile of CBD.”

http://www.ncbi.nlm.nih.gov/pubmed/22716146

Modulation of Fear Memory by Dietary Polyunsaturated Fatty Acids via Cannabinoid Receptors.

“…several studies have suggested benefits of n-3 long-chain polyunsaturated fatty acid (PUFA) for patients with anxiety disorders.

Elevated fear is thought to contribute to the pathogenesis of particular anxiety disorders. The aim of the present study was to evaluate whether the dietary n-3 to n-6 PUFA (3/6) ratio influences fear memory…

These results suggest that the ratio of n-3 to n-6 PUFA is a factor regulating fear memory via cannabinoid CB1 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/24518289

Cannabinoid System of the Lateral Septum in the Modulation of Anxiety-like Behaviors in Rats.

“A large body of evidence suggests that the cannabinoid CB1 receptor plays a key role in the regulation of emotional behaviors. The present study was designed to evaluate the effects of CB1 agonist and antagonist on anxiety-like behaviors in the lateral septum (LS) region of the rat brain using elevated plus maze test…

The results suggest that the cannabinoid system of the lateral septum modulates anxiety-like behavior through CB1 receptor.”

http://www.ncbi.nlm.nih.gov/pubmed/24329144