The endocannabinoid system and its therapeutic exploitation.

Image result for Nat Rev Drug Discov.

“The term ‘endocannabinoid’ – originally coined in the mid-1990s after the discovery of membrane receptors for the psychoactive principle in Cannabis, Delta9-tetrahydrocannabinol and their endogenous ligands – now indicates a whole signalling system that comprises cannabinoid receptors, endogenous ligands and enzymes for ligand biosynthesis and inactivation. This system seems to be involved in an ever-increasing number of pathological conditions. With novel products already being aimed at the pharmaceutical market little more than a decade since the discovery of cannabinoid receptors, the endocannabinoid system seems to hold even more promise for the future development of therapeutic drugs. We explore the conditions under which the potential of targeting the endocannabinoid system might be realized in the years to come.”  http://www.ncbi.nlm.nih.gov/pubmed/15340387

http://www.nature.com/nrd/journal/v3/n9/full/nrd1495.html

Smoking Cannabis Reduces Pain, Helps Sleep And Improves Mood For Those With Chronic Symptoms

“For patients with chronic (long-term) neuropathic pain, smoking cannabis was found to reduce symptoms of pain, improve mood and help sleep, a report published in CMAJ (Canadian Medical Journal Association) revealed. When damage or dysfunction of the nervous system results in chronic neuropathic pain, patients have few treatment options, such as antidepressants, local anesthetics, anticonvulsants or opioids. However, these medications often have undesirable side effects and do not work for everybody.

The authors inform that oral cannabinoids have been effective in reducing the symptoms of some types of pain. However, they many have different effects and risks compared to smoked cannabis.

Investigators from McGill University Health Centre (MUHC) and McGill University carried out a randomized, controlled trial to determine the analgesic effect of smoked cannabis in 21 patients, aged 18 years or more, all of them with chronic neuropathic pain. THC levels (drug potencies) were divided into 2.5%, 6% and 9.4%. Some participants also received a placebo (0%).

The researchers inform that there was a correlation between increased THC content and better sleep quality. Symptoms of depression and/or anxiety were also reduced at 9.5% THC level.”

More: http://www.medicalnewstoday.com/articles/199376.php

Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory.

“Repeated stress is one of the environmental factors that precipitates and exacerbates mental illnesses like depression and anxiety as well as cognitive impairments. We have previously shown that cannabinoids can prevent the effects of acute stress on learning and memory.

Here we aimed to find whether chronic cannabinoid treatment would alleviate the long-term effects of exposure to chronic restraint stress on memory and plasticity as well as on behavioral and neuroendocrine measures of anxiety and depression. Late adolescence rats were exposed to chronic restraint stress for two weeks followed each day by systemic treatment with vehicle or with the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). Thirty days after the last exposure to stress, rats demonstrated impaired long-term potentiation (LTP) in the ventral subiculum (vSub)-nucleus accumbens (NAc) pathway, impaired performance in the prefrontal cortex (PFC)-dependent object recognition task and the hippocampal-dependent spatial version of this task, increased anxiety levels, and significantly reduced expression of glucocorticoid receptors (GRs) in the amygdala, hippocampus, PFC and NAc. Chronic WIN55,212-2 administration prevented the stress-induced impairment in LTP levels and in the spatial task, with no effect on stress-induced alterations in unconditioned anxiety levels or GR levels. The CB1 antagonist AM251 (0.3 mg/kg) prevented the ameliorating effects of WIN55,212-2 on LTP and short-term memory. Hence, the beneficial effects of WIN55,212-2 on memory and plasticity are mediated by CB1 receptors and are not mediated by alterations in GR levels in the brain areas tested.

 Our findings suggest that cannabinoid receptor activation could represent a novel approach to the treatment of cognitive deficits that accompany a variety of stress-related neuropsychiatric disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/23426383

Cannabidiol Inhibits Growth and Induces Programmed Cell Death in Kaposi Sarcoma–Associated Herpesvirus-Infected Endothelium

“Kaposi sarcoma is the most common neoplasm caused by Kaposi sarcoma–associated herpesvirus (KSHV). Current treatments for Kaposi sarcoma can inhibit tumor growth but are not able to eliminate KSHV from the host. When the host’s immune system weakens, KSHV begins to replicate again, and active tumor growth ensues. New therapeutic approaches are needed.

Cannabidiol (CBD), a plant-derived cannabinoid, exhibits promising antitumor effects without inducing psychoactive side effects. CBD is emerging as a novel therapeutic for various disorders, including cancer.

In this study, we investigated the effects of CBD both on the infection of endothelial cells (ECs) by KSHV and on the growth and apoptosis of KSHV-infected ECs, an in vitro model for the transformation of normal endothelium to Kaposi sarcoma….

Cannabidiol (CBD) was first isolated in 1940. It is a major component of the plant Cannabis sativa, which is also the source of Δ9-tetrahydrocannabinol (Δ9-THC). Due to its multiple biological activities, CBD has been identified as a potential clinical agent. Moreover, CBD affects these activities without the psychoactive side effects that typify Δ9-THC. Recent studies have documented the potential antitumorigenic properties of CBD in the treatment of various neoplasms, including breast cancer, lung cancer, bladder cancer, glioblastoma,and leukemia.CBD induces these effects through a variety of mechanisms and signaling pathways

CBD has been evaluated clinically for the treatment of various conditions, including anxiety, psychosis, and pain. In contrast to other members of the cannabinoid family, CBD has a strong safety profile and induces no psychotropic effects.Therefore, it has become an attractive agent in the search for new anticancer therapies.Our current study demonstrated that CBD preferentially enhanced apoptosis and inhibited the proliferation of KSHV-infected endothelial cells. This selective targeting of KSHV-induced neoplasia suggests that CBD may have a desirable therapeutic index when used to treat cancer. Moreover, a recent study demonstrated that CBD can be delivered effectively by nasal and transdermal routes, which may be particularly valuable for the treatment of Kaposi sarcoma oral or skin lesions.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527984/

Cannabidiol Relieves Psychosis in Schizophrenia, Why is it Illegal?

“A molecule in cannabis (CBD) has shown to relieve anxiety and symptoms of psychosis in people diagnosed with schizophrenia, though many patients are denied or discouraged from this medicine with fewer side effects than pharmaceutical products because the DEA has deemed the cannabis plant to be “illegal”. The U.S. government needs to answer “why?” this medicine warrents time in prison when nobody is being harmed.

 Investigators concluded, “Our results provide evidence that the non-cannabimimetic constituent of marijuana, cannabidiol, exerts clinically relevant antipsychotic effects that are associated with marked tolerability and safety, when compared with current medications. … The results … potentially represent a completely new mechanism in the treatment of schizophrenia.”

 “Studies have suggested a wide range of possible therapeutic effects of cannabidiol on several conditions, including Parkinson’s disease, Alzheimer’s disease, cerebral ischemia, diabetes, rheumatoid arthritis, other inflammatory diseases, nausea and cancer,” Zuardi writes. Let’s look at a few of these in detail, shall we?

1. Antiepileptic action
“In 1973, a Brazilian group reported that CBD was active in … blocking convulsions produced in experimental animals.”

2. Sedative action
“In humans with insomnia, high doses of CBD increased sleep duration compared to placebo.”

3. Anxiolytic action
“CBD induce[s] a clear anxiolytic effect and a pattern of cerebral activity compatible with an anxiolytic activity.”

4. Antipsychcotic action
“[C]linical studies suggest that CBD is an effective, safe and well-tolerated alternative treatment for schizophrenic patients.”

5. Antidystonic action
“CBD … had antidystonic effects in humans when administered along with standard medication to five patients with dystonia, in an open study.”

6. Antioxidative action
“[I]t was demonstrated that CBD can reduce hydroperoxide-induced oxidative damage as well as or better than other antioxidants. CBD was more protective against glutamate neurotoxicity than either ascorbate or a-tocopherol, indicating that this drug is a potent antioxidant.”

7. Neuroprotective action
“A marked reduction in the cell survival was observed following exposure of cultured rat pheochromocytoma PC12 cells to beta-A peptide. Treatment of the cells with CBD prior to beta-A exposure significantly elevated the cell survival.”

8. Antiinflammatory action
“CBD, administered i.p. or orally, has blocked the progression of arthritis.”

9. Cardioprotective action
“CBD induces a substantial cardioprotective effect.”

10. Action on diabetes
“CBD treatment of NOD (non-obese diabetic) mice before the development of the disease reduced its incidence from 86% in the non-treated control mice to 30% in CBD-treated mice. … It was also observed that administration of CBD to 11-14 week old female NOD mice, which were either in a latent diabetes stage or had initial symptoms of diabetes, ameliorated the manifestations of the disease.”

11. Antiemetic action
“The expression of this conditioned retching reaction was completely suppressed by CBD and delta9-THC, but not by ondansetron, [an] antagonist that interferes with acute vomiting.”

12. Anticancer action
“A study of the effect of different cannabinoids on eight tumor cell lines, in vitro, has clearly indicated that, of the five natural compounds tested, CBD was the most potent inhibitor of cancer cell growth.”

In sum, the past 45 years of scientific study on CBD has revealed the compound to be non-toxic, non-psychoactive, and to possess a multitude of therapeutic properties. Yet, to this day it remains illegal to possess or use (and nearly impossible to study in US clinical trials) simply because it is associated with marijuana.

What possible advancements in medical treatment may have been achieved over the past decades had US government officials chosen to advance — rather than inhibit — clinical research into CBD (which, under federal law, remains a Schedule I drug defined as having “no currently accepted medical use”)? Perhaps it’s time someone asks John Walters or the DEA?” 

Read more: http://rinf.com/alt-news/latest-news/cannabidiol-relieves-psychosis-in-schizophrenia-why-is-it-illegal/17827/

The endocannabinoid system and the treatment of mood and anxiety disorders.

“The central endocannabinoid system is a neuroactive lipid signalling system in the brain which acts to control neurotransmitter release. The expression patterns of this system throughout limbic regions of the brain ideally situate it to exert regulatory control over emotional behaviour, mood and stress responsivity. A growing body of evidence unequivocally demonstrates that deficits in endocannabinoid signalling may result in depressive and anxiogenic behavioral responses, while pharmacological augmentation of endocannabinoid signalling can produce both antidepressive and anxiolytic behavioral responses. The aim of this review is to summarize current knowledge of the role of the endocannabinoid system in the etiology and treatment of mood and anxiety disorders, such as depression, anxiety and post-traumatic stress disorder.

Collectively, both clinical and preclinical data argue that cannabinoid receptor signalling may be a realistic target in the development of a novel class of agent for the pharmacotherapy of mood and anxiety disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/19839936

Cannabinoids and anxiety.

“The term cannabinoids encompasses compounds produced by the plant Cannabis sativa, such as delta9-tetrahydrocannabinol, and synthetic counterparts. Their actions occur mainly through activation of cannabinoid type 1 (CB1) receptors. Arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol (2-AG) serve as major endogenous ligands (endocannabinoids) of CB1 receptors. Hence, the cannabinoid receptors, the endocannabinoids, and their metabolizing enzymes comprise the endocannabinoid system. Cannabinoids induce diverse responses on anxiety- and fear-related behaviors. Generally, low doses tend to induce anxiolytic-like effects, whereas high doses often cause the opposite. Inhibition of endocannabinoid degradation seems to circumvent these biphasic effects by enhancing CB1 receptor signaling in a temporarily and spatially restricted manner, thus reducing anxiety-like behaviors. Pharmacological blockade or genetic deletion of CB1 receptors, in turn, primarily exerts anxiogenic-like effects and impairments in extinction of aversive memories. Interestingly, pharmacological blockade of Transient Receptor Potential Vanilloid Type-1 (TRPV1) channel, which can be activated by anandamide as well, has diametrically opposite consequences. This book chapter summarizes and conceptualizes our current knowledge about the role of (endo)cannabinoids in fear and anxiety and outlines implications for an exploitation of the endocannabinoid system as a target for new anxiolytic drugs.”

http://www.ncbi.nlm.nih.gov/pubmed/21309120

The endocannabinoid system in anxiety, fear memory and habituation.

“Evidence for the involvement of the endocannabinoid system (ECS) in anxiety and fear has been accumulated, providing leads for novel therapeutic approaches. In anxiety, a bidirectional influence of the ECS has been reported, whereby anxiolytic and anxiogenic responses have been obtained after both increases and decreases of the endocannabinoid tone. The recently developed genetic tools have revealed different but complementary roles for the cannabinoid type 1 (CB1) receptor on GABAergic and glutamatergic neuronal populations. This dual functionality, together with the plasticity of CB1 receptor expression, particularly on GABAergic neurons, as induced by stressful and rewarding experiences, gives the ECS a unique regulatory capacity for maintaining emotional homeostasis. However, the promiscuity of the endogenous ligands of the CB1 receptor complicates the interpretation of experimental data concerning ECS and anxiety. In fear memory paradigms, the ECS is mostly involved in the two opposing processes of reconsolidation and extinction of the fear memory. Whereas ECS activation deteriorates reconsolidation, proper extinction depends on intact CB1 receptor signalling. Thus, both for anxiety and fear memory processing, endocannabinoid signalling may ensure an appropriate reaction to stressful events. Therefore, the ECS can be considered as a regulatory buffer system for emotional responses.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267552/

The endocannabinoid system in the regulation of emotions throughout lifespan: a discussion on therapeutic perspectives.

“Alterations in emotion regulation processes may form the basis of psychopathologies. The endocannabinoid (eCB) system, composed of endogenous ligands, the enzymatic machinery in charge of their metabolism and the specific metabotropic receptors, has emerged as a major neuromodulatory system critically involved in the control of emotional homeostasis and stress responsiveness. Data from animal models indicate that the eCB system plays a key role in brain development, and is probably involved in the control of emotional states from early developmental stages.

The present review summarizes the latest information on the role of the eCB system in emotionality and anxiety-related disorders throughout the lifespan. Putative therapeutic strategies based on the pharmacological modulation of this system will be discussed.

 Given the fact that the pharmacological modulation of the eCB system has recently arisen as a promising strategy in the management of anxiety and mood disorders, the potential efficacy of this pharmacological approach (i.e. blockers of the catabolic pathway) will be discussed, as well as pharmacological alternatives such as modulators of cannabinoid receptors other than the classical CB1 receptor, or administration of other plant-derived compounds (e.g. cannabidiol).”

http://www.ncbi.nlm.nih.gov/pubmed/21693551

Pharmacological exploitation of the endocannabinoid system: new perspectives for the treatment of depression and anxiety disorders?

 “Animal experiments suggest that drugs promoting endocannabinoid action may represent a novel strategy for the treatment of depression and anxiety disorders.

Because of its analgesic, antiemetic and tranquilizing effects, the herb Cannabis sativa has been used for medical purposes for centuries. In addition, preparations of cannabis, such as marijuana, hashish or skunk, have a long history as drugs of abuse.1 Typical effects of cannabis abuse are amnesia, sedation and a feeling of well-being described as “bliss”.2 In the middle of the last century, Raphael Mechoulam and colleagues identified Δ9-tetrahydrocannabinol (Δ9-THC) as the main psychoactive ingredient of this herb. Today, it is known that Cannabis sativa contains more than 60 substances, such as cannabidiol, cannabinol and cannabicromene, which are referred to as phytocannabinoids.3 Their lipid nature posed a significant obstacle to chemical experiments, which might explain why the discovery of phytocannabinoids occurred late compared to other natural compounds (e.g. morphine was isolated from opium in the XIX century). The molecular structure rendered it likely that Δ9-THC exerts its effects primarily by changing physico-chemical characteristics of cell membranes. Therefore it came as a surprise that specific binding sites could be identified within the mammalian brain,4 followed by isolation and characterization of endogenous binding substances, named endocannabinoids.5 The development of novel pharmacological compounds targeting receptors or ligand synthesis and degradation revealed a number of complex brain functions, which are tightly controlled by the endocannabinoid system. The aim of the present review is to briefly introduce this system and its pharmacology, to discuss its involvement in psychopathology and to illustrate its therapeutic potential.

 Conclusion

 Malfunctions in the endocannabinoid system may promote the development and maintenance of psychiatric disorders such as depression, phobias and panic disorder. Thus, CB1 agonists or inhibitors of anandamide hydrolysis are expected to exert antidepressant and anxiolytic effects. Future studies should consider 1) the development of CB1 antagonists that cannot readily cross the blood-brain barrier, 2) shifts in the balance of CB1 vs. TRPV1 signalling, 3) the allosteric site of CB1 receptor and 4) the potential involvement of CB2 receptor in mood regulation. Striking similarities in (endo)cannabinoid action in animals and men render it likely that the new pharmacological principle outlined in the present article may find their way into clinical practice.”

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-44462010000500004&lng=en&nrm=iso&tlng=en