Nabilone for the treatment of paraneoplastic night sweats: a report of four cases.

“Night sweats are one of many symptoms experienced by patients with advanced cancer. Persistent night sweats tend to decrease quality of life through interference with sleep… night sweats represent one of the symptoms that displays a tendency not to improve as patients with advanced cancer approach end of life…

This paper serves to report on the successful management of four patients suffering from persistent paraneoplastic night sweats using the synthetic orally administered cannabinoid nabilone…”

http://www.ncbi.nlm.nih.gov/pubmed/18715188

Inhibition of endocannabinoid catabolic enzymes elicits anxiolytic-like effects in the marble burying assay

“Cannabinoids have long been shown to have a range of potential therapeutic effects, including antiemetic actions, analgesia, and anxiolysis. These data indicate that elevation of AEA or 2-AG reduces marble burying behavior and suggest that their catabolic enzymes represent potential targets for the development of new classes of pharmacotherapeutics to treat anxiety-related disorders.

Marijuana is commonly smoked to reduce feelings of stress and anxiety… much interest has been generated by the discovery of the endogenous cannabinoid (i.e. endocannabinoid; eCB) system as a source of targets for the development of new therapeutic treatments of a range of ailments including anxiety and depression…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3034086/

Anandamide hydrolysis: a new target for anti-anxiety drugs?

“The major psychoactive constituent of cannabis, Delta(9)-tetrahydrocannabinol, affects emotional states in humans and laboratory animals by activating brain cannabinoid receptors. A primary endogenous ligand of these receptors is anandamide, the amide of arachidonic acid with ethanolamine. Anandamide is released in selected regions of the brain and is deactivated through a two-step process consisting of transport into cells followed by intracellular hydrolysis. Pharmacological blockade of the enzyme fatty acid amide hydrolase (FAAH), which is responsible for intracellular anandamide degradation, produces anxiolytic-like effects in rats without causing the wide spectrum of behavioral responses typical of direct-acting cannabinoid agonists. These findings suggest that anandamide contributes to the regulation of emotion and anxiety, and that FAAH might be the target for a novel class of anxiolytic drugs.”

http://www.ncbi.nlm.nih.gov/pubmed/14604824

Interaction between cannabinoid compounds and diazepam on anxiety-like behaviour of mice.

“Previous studies have suggested that cannabinoidergic system is involved in anxiety. However, a complete picture of cannabinoid association in the anxiety is still lacking. In the present study, we investigated the possible interaction between cannabinoidergic and GABAergic systems in the anxiety-like behaviour of mice…

 Taken together, the present study showed that co-administration of exogenous cannabinoids and diazepam produce additive or synergistic effect at different combinations. Moreover, it has been shown that enhancement of the function of endocannabinoids could increase the anxiolytic effect of diazepam.”

http://www.ncbi.nlm.nih.gov/pubmed/18096213

Cannabinoid CB1 receptors of the rat central amygdala mediate anxiety-like behavior: interaction with the opioid system.

“Cannabinoids, which are the active compounds of marijuana, produce some pharmacological effects similar to the opioids. In addition, there are functional interactions between the cannabinoid and opioid systems. In this study, we investigated the effects of intraperitoneal (i.p.) injection of opioid drugs on responses induced by intracentral amygdala (intra-CeA) microinjection of cannabinoid CB1 receptor agents in rats, using the elevated plus maze test of anxiety…

 In conclusion, the results may indicate an anxiolytic-like effect for cannabinoid CB1 receptors of the CeA and the existence of an interaction between the cannabinoid and the opioid systems in the modulation of anxiety.” 

http://www.ncbi.nlm.nih.gov/pubmed/18797248

Activation of cannabinoid CB1 receptors in the dorsolateral periaqueductal gray induces anxiolytic effects in rats submitted to the Vogel conflict test.

“Activation of cannabinoid CB(1) receptors in the dorsolateral periaqueductal gray induces anxiolytic-like effects in the elevated plus maze. The aim of this work was to verify if facilitation of endocannabinoid-mediated neurotransmission in this region would also produce anxiolytic-like effects in another model of anxiety, the Vogel conflict test…

The results give further support to the proposal that facilitation of CB(1) receptor-mediated endocannabinoid neurotransmission in the dorsolateral periaqueductal gray modulates defensive responses.”

http://www.ncbi.nlm.nih.gov/pubmed/18691568

The cannabinoid CB1 receptor is involved in the anxiolytic, sedative and amnesic actions of benzodiazepines.

“Previous studies in our laboratory showed that cannabinoid CB1 receptor knockout mice (CB1-/-) presented increased anxiety-like behaviours that did not respond to the anxiolytic actions of benzodiazepines. These results suggest that the pharmacological effects of benzodiazepines may involve the participation of cannabinoid CB1 receptors. Therefore, the purpose of this study was to examine the effects of alprazolam and the cannabinoid CB1 receptor antagonist…

Taken together, these findings revealed that cannabinoid CB1 receptor plays a pivotal role in the pharmacological actions of benzodiazepines. Furthermore, these results suggest that blockade of cannabinoid CB1 receptors may be useful in the treatment of patients with problems related to the consumption of benzodiazepines. Further clinical trials are needed to test this hypothesis.”

http://www.ncbi.nlm.nih.gov/pubmed/19825899

A role for cannabinoid CB1 receptors in mood and anxiety disorders.

“Mood and anxiety disorders, the most prevalent of the psychiatric disorders, cause immeasurable suffering worldwide. Despite impressive advances in pharmacological therapies, improvements in efficacy and side-effect profiles are needed. The present literature review examines the role that the endocannabinoid system may play in these disorders and the potential value of targeting this system in the search for novel and improved medications.

Cannabis and its major psychoactive component (-)-trans-delta9-tetrahydrocannabinol, have profound effects on mood and can modulate anxiety and mood states. Cannabinoid receptors and other protein targets in the central nervous system (CNS) that modulate endocannabinoid function have been described. The discovery of selective modulators of some of these sites that increase or decrease endocannabinoid neurotransmission, primarily through the most prominent of the cannabinoid receptors in the CNS, the CB1 receptors, combined with transgenic mouse technology, has enabled detailed investigations into the role of these CNS sites in the regulation of mood and anxiety states. Although data point to the involvement of the endocannabinoid system in anxiety states, the pharmacological evidence seems contradictory: both anxiolytic- and anxiogenic-like effects have been reported with both endocannabinoid neurotransmission enhancers and blockers.

Due to advances in the development of selective compounds directed at the CB1 receptors, significant progress has been made on this target. Recent biochemical and behavioural findings have demonstrated that blockade of CB1 receptors engenders antidepressant-like neurochemical changes (increases in extracellular levels of monoamines in cortical but not subcortical brain regions) and behavioural effects consistent with antidepressant/antistress activity in rodents.”

http://www.ncbi.nlm.nih.gov/pubmed/16148437

Cannabinoid-1 receptor: a novel target for the treatment of neuropsychiatric disorders.

“G-protein-coupled receptor (GPCR)-mediated signalling is the most widely used signalling mechanism in cells, and its regulation is important for various physiological functions. The cannabinoid-1 (CB(1)) receptor, a GPCR, has been shown to play a critical role in neural circuitries mediating motivation, mood and emotional behaviours.

 Several recent studies have indicated that impairment of CB(1) receptor-mediated signalling may play a critical role in the pathophysiology of various neuropsychiatric disorders. In this article, the authors briefly review literature relating to the role played by the endocannabinoid system in various neuropsychiatric disorders, and the CB(1) receptor as a potential therapeutic target for the treatment of alcoholism, depression, anxiety and schizophrenia.”

http://www.ncbi.nlm.nih.gov/pubmed/16548770

CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents.

“Cannabinoids are known to modulate GABAergic and glutamatergic transmission in cortical areas, the former via CB1 and the latter via a novel receptor. Pharmacological data demonstrate that several widely used cannabinoid ligands bind to both receptors, which may explain the inconsistencies in their behavioural effects. 

 In the present experiments, we studied the effects of the CB1 antagonist… and the cannabinoid agonist… in wild-type as well as in CB1 knockout mice… In wild types, the cannabinoid agonist… caused a decrease in anxiety-like behaviour, which was abolished by the CB1-selective antagonist…

 Our studies on the behavioural effects of the cannabinoid antagonist SR-141716A and the CB1 antagonist AM-251 show that the CB1 and the novel cannabinoid receptor mediate anxiolytic (anti-anxiety) and anxiogenic (anxiety) effects, respectively.

This suggests that agonists of the former, or antagonists of the latter, are promising new compounds in the pharmacotherapy of anxiety.”

http://www.ncbi.nlm.nih.gov/pubmed/15252281