“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”
Category Archives: Anxiety
FAAH and MAGL inhibitors: therapeutic opportunities from regulating endocannabinoid levels.
Abstract
“Apart from their widespread recreational abuse, the psychoactive preparations of the plant Cannabis sativa and its major psychotropic component, Delta9-tetrahydrocannabinol (THC), are also known for their medicinal properties. Following the identification of receptors for THC – the cannabinoid CB1 and CB2 receptors – in mammals, various pharmaceutical strategies have attempted to exploit the properties of the cannabinoid system while minimizing psychotropic side effects. The cloning of the cannabinoid CB1 and CB2 receptors enabled the discovery of the endogenous agonists of the receptors, the endocannabinoids, and eventually led to the identification of enzymes that catalyze endocannabinoid inactivation. Unlike exogenously administered THC and synthetic CB1 and CB2 agonists, the endocannabinoids that are produced endogenously following the onset of several pathologies may act in a site- and time-specific manner to minimize the consequences of such conditions. This observation has suggested the possibility of targeting endocannabinoid-degrading enzymes to prolong the precisely regulated pro-homeostatic action of endocannabinoids. Two major enzymes have been cloned and investigated thoroughly: fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). Inhibitors of these enzymes have demonstrated therapeutic benefit in animal models of several disorders, including neuropathic pain, anxiety and inflammatory bowel diseases, as well as against the proliferation and migration of cancer cells. This review describes the major biochemical properties of FAAH and MAGL, and the design and pharmacological properties of inhibitors of these enzymes.”
New insights into endocannabinoid degradation and its therapeutic potential.
Abstract
“Endocannabinoids are amides, esters and ethers of long chain polyunsaturated fatty acids, which act as new lipidic mediators. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of (-)-Delta9-tetrahydrocannabinol (THC), the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA and 2-AG at their receptors is limited by cellular uptake through an anandamide membrane transporter (AMT), followed by intracellular degradation. A fatty acid amide hydrolase (FAAH) is the main AEA hydrolase, whereas a monoacylglycerol lipase (MAGL) is critical in degrading 2-AG. Here, we will review growing evidence that demonstrates that these hydrolases are pivotal regulators of the endogenous levels of AEA and 2-AG in vivo, overall suggesting that specific inhibitors of AMT, FAAH or MAGL may serve as attractive therapeutic targets for the treatment of human disorders. Recently, the N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD), which synthesizes AEA from N-arachidonoylphosphatidylethanolamine (NArPE), and the diacylglycerol lipase (DAGL), which generates 2-AG from diacylglycerol (DAG) substrates, have been characterized. The role of these synthetic routes in maintaining the endocannabinoid tone in vivo will be discussed. Finally, the effects of inhibitors of endocannabinoid degradation in animal models of human disease will be reviewed, with an emphasis on their ongoing applications in anxiety, cancer and neurodegenerative disorders.”
Discovery and development of endocannabinoid-hydrolyzing enzyme inhibitors.
Abstract
“Fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGL) are hydrolytic enzymes which degrade the endogenous cannabinoids (endocannabinoids) N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), respectively. Endocannabinoids are an important class of lipid messenger molecules that are produced on demand in response to elevated intracellular calcium levels. They recognize and activate the cannabinoid CB(1) and CB(2) receptors, the molecular targets for Delta(9)-tetrahydrocannabinol (Delta(9)-THC) in marijuana evoking several beneficial therapeutic effects. However, in vivo the cannabimimetic effects of AEA and 2-AG remain weak owing to their rapid inactivation by FAAH and MGL, respectively. The inactivation of FAAH and MGL by specific enzyme inhibitors increases the levels of AEA and 2-AG, respectively, producing therapeutic effects such as pain relief and depression of anxiety.”
Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice
“Cannabidiol is a Cannabis-derived non-psychotropic compound that exerts a plethora of pharmacological actions, including anti-inflammatory, neuroprotective and antitumour effects, with potential therapeutic interest. However, the actions of cannabidiol in the digestive tract are largely unexplored. In the present study, we investigated the effect of cannabidiol on intestinal motility in normal (control) mice and in mice with intestinal inflammation.”
“Cannabidiol selectively reduces croton oil-induced hypermotility in mice in vivo and this effect involves cannabinoid CB1 receptors and FAAH. In view of its low toxicity in humans, cannabidiol may represent a good candidate to normalize motility in patients with inflammatory bowel disease.”
“The plant Cannabis sativa contains more than 60 terpenophenolic compounds, named phytocannabinoids. The best-studied phytocannabinoid is Δ9-tetrahydrocannabinol, which binds specific G-protein-coupled receptors, named cannabinoid (CB1 and CB2) receptors. The well-known psychotropic effects of Δ9-tetrahydrocannabinol, which are largely mediated by activation of brain cannabinoid CB1 receptors, have always raised a number of clinical and ethical problems. Therefore, a valid therapeutic alternative may be the use of non-psychotropic phytocannabinoids, including cannabidiol (CBD). CBD, unlike Δ9-tetrahydrocannabinol, has very low affinity for both cannabinoid CB1 and CB2 receptors, although it has been proposed that CBD may modulate endocannabinoid function through its ability to inhibit the hydrolysis of anandamide and to act as a transient receptor potential vanilloid 1 agonist. CBD is a major component of Sativex, a preparation of cannabinoids, which has been approved by Health Canada for the treatment of neuropathic pain in multiple sclerosis.”
“The pharmacological profile of CBD has been recently reviewed. Briefly stated, CBD has been shown to exert (1) antioxidant, neuroprotective and antiproliferative actions in cultured cells and (2) anti-anxiety, hypnotic, anticonvulsant, neuroprotective, antinausea, anti-ischaemic, anticancer and notably anti-inflammatory effects in rodents in vivo. The anti-inflammatory effects of CBD have been demonstrated in both acute and chronic experimental models of inflammation, that is, paw oedema and arthritis.”
“In conclusion, we have shown that the marijuana component CBD normalize intestinal motility in an experimental model of ileitis. In vitro results showed antispasmodic actions of CBD on intestinal ileal segments. The inhibitory effect of CBD involves, at least in vivo, cannabinoid CB1 receptors and FAAH. In view of its safety records in humans (an average daily dose of about 700mg/day for 6 weeks was found to be non-toxic, relative to placebo, in clinical trials; and because CBD reduced motility during inflammation and not in physiological conditions, CBD might be considered as a good candidate to be clinically evaluated for the treatment of hypermotility associated with inflammatory bowel disease.”
Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.
“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.” https://www.ncbi.nlm.nih.gov/pubmed/23108552
“Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities” http://rstb.royalsocietypublishing.org/content/367/1607/3353.long
Safety and side effects of cannabidiol, a Cannabis sativa constituent.
“Cannabidiol (CBD), a major nonpsychotropic constituent of Cannabis, has multiple pharmacological actions, including anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, little is known about its safety and side effect profile in animals and humans. This review describes in vivo and in vitro reports of CBD administration across a wide range of concentrations, based on reports retrieved from Web of Science, Scielo and Medline. The keywords searched were “cannabinoids”, “cannabidiol” and “side effects”. Several studies suggest that CBD is non-toxic in non-transformed cells and does not induce changes on food intake, does not induce catalepsy, does not affect physiological parameters (heart rate, blood pressure and body temperature), does not affect gastrointestinal transit and does not alter psychomotor or psychological functions. Also, chronic use and high doses up to 1,500 mg/day of CBD are reportedly well tolerated in humans. Conversely, some studies reported that this cannabinoid can induce some side effects, including inhibition of hepatic drug metabolism, alterations of in vitro cell viability, decreased fertilization capacity, and decreased activities of p-glycoprotein and other drug transporters. Based on recent advances in cannabinoid administration in humans, controlled CBD may be safe in humans and animals. However, further studies are needed to clarify these reported in vitro and in vivo side effects.”
Therapeutic aspects of cannabis and cannabinoids
“HISTORY OF THERAPEUTIC USE
The first formal report of cannabis as a medicine appeared in China nearly 5000 years ago when it was recommended for malaria, constipation, rheumatic pains and childbirth and, mixed with wine, as a surgical analgesic. There are subsequent records of its use throughout Asia, the Middle East, Southern Africa and South America. Accounts by Pliny, Dioscorides and Galen remained influential in European medicine for 16 centuries.”
“It was not until the 19th century that cannabis became a mainstream medicine in Britain. W. B. O’Shaughnessy, an Irish scientist and physician, observed its use in India as an analgesic, anticonvulsant, anti-spasmodic, anti-emetic and hypnotic. After toxicity experiments on goats and dogs, he gave it to patients and was impressed with its muscle-relaxant, anticonvulsant and analgesic properties, and recorded its use-fulness as an anti-emetic.”
“After these observations were published in 1842, medicinal use of cannabis expanded rapidly. It soon became available ‘over the counter’ in pharmacies and by 1854 it had found its way into the United States Dispensatory. The American market became flooded with dozens of cannabis-containing home remedies.”
“Cannabis was outlawed in 1928 by ratification of the 1925 Geneva Convention on the manufacture, sale and movement of dangerous drugs. Prescription remained possible until final prohibition under the 1971 Misuse of Drugs Act, against the advice of the Advisory Committee on Drug Dependence.”
“In the USA, medical use was effectively ruled out by the Marijuana Tax Act 1937. This ruling has been under almost constant legal challenge and many special dispensations were made between 1976 and 1992 for individuals to receive ‘compassionate reefers’. Although this loophole has been closed, a 1996 California state law permits cultivation or consumption of cannabis for medical purposes, if a doctor provides a written endorsement. Similar arrangements apply in Italy and Canberra, Australia.”
“Results and Conclusions Cannabis and some cannabinoids are effective anti-emetics and analgesics and reduce intra-ocular pressure. There is evidence of symptom relief and improved well-being in selected neurological conditions, AIDS and certain cancers. Cannabinoids may reduce anxiety and improve sleep. Anticonvulsant activity requires clarification. Other properties identified by basic research await evaluation. Standard treatments for many relevant disorders are unsatisfactory. Cannabis is safe in overdose but often produces unwanted effects, typically sedation, intoxication, clumsiness, dizziness, dry mouth, lowered blood pressure or increased heart rate. The discovery of specific receptors and natural ligands may lead to drug developments. Research is needed to optimise dose and route of administration, quantify therapeutic and adverse effects, and examine interactions.”
The therapeutic potential of novel cannabinoid receptors.
“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.” http://www.ncbi.nlm.nih.gov/pubmed/19248809
“The therapeutic potential of novel cannabinoid receptors” http://www.sciencedirect.com/science/article/pii/S0163725809000266
The cannabinoid system and immune modulation
“Studies on the effects of marijuana smoking have evolved into the discovery and description of the endocannabinoid system. To date, this system is composed of two receptors, CB1 and CB2, and endogenous ligands including anandamide, 2-arachidonoyl glycerol, and others. CB1 receptors and ligands are found in the brain as well as immune and other peripheral tissues. Conversely, CB2 receptors and ligands are found primarily in the periphery, especially in immune cells. Cannabinoid receptors are G protein-coupled receptors, and they have been linked to signaling pathways and gene activities in common with this receptor family. In addition, cannabinoids have been shown to modulate a variety of immune cell functions in humans and animals and more recently, have been shown to modulate T helper cell development, chemotaxis, and tumor development. Many of these drug effects occur through cannabinoid receptor signaling mechanisms and the modulation of cytokines and other gene products.
It appears the immunocannabinoid system is involved in regulating the brain-immune axis and might be exploited in future therapies for chronic diseases and immune deficiency.”
“The medicinal uses of marijuana were described centuries ago for diseases such as asthma, migraine, pain, convulsions, and anxiety (reviewed in ref.). More recently, emphasis has been placed on marijuana’s putative, beneficial effects on appetite, glaucoma, spasticity in multiple sclerosis, pain, and inflammation.
Recent experimental evidence supports marijuana’s therapeutic potential in some of these maladies.
The active plant ingredients in marijuana belong to the C21-cannabinoid compounds including the primary psychoactive compound, Δ9-tetrahydrocannabinol (THC). This cannabinoid along with others such as Δ8-THC, cannabidiol, and cannabinol, as well as chemical analogs, have been extensively studied over the years for their biological and therapeutic properties. Some of the properties of these agents have included effects on immunity ranging from suppression of resistance to infection to enhancement of IL-1 production by macrophages. These early studies about the immunomodulating effects of these drugs have been the subject of previous overviews and will not be reviewed here. Instead, we will briefly summarize the general features of the cannabinoid system and review recent findings on the structure and function of the cannabinoid system components in the immune system. For convenience, we will refer to this as the “immunocannabinoid” system.
CANNABINOID SYSTEM
Marijuana cannabinoids, analogs, and endocannabinoids”
https://jlb.onlinelibrary.wiley.com/doi/full/10.1189/jlb.0303101?sid=nlm%3Apubmed