Association between marijuana use and electrocardiographic abnormalities by middle age The Coronary Artery Risk Development in Young Adults (CARDIA) Study

 Addiction

“Aims

To evaluate the prevalence of electrocardiogram (ECG) abnormalities in marijuana users as an indirect measure of subclinical cardiovascular disease (CVD).

Findings

Among the 2,585 participants with an ECG at Year 20, mean age was 46, 57% were women, 45% were black. 83% had past exposure to marijuana and 11% were using marijuana currently. One hundred and seventy‐three participants (7%) had major abnormalities and 944 (37%) had minor abnormalities. Comparing current with never use in multivariable‐adjusted models, the OR for major ECG abnormalities was 0.60 (95% CI: 0.32 to 1.15) and for minor ECG abnormalities 1.21 (95% CI: 0.87 to 1.68). Results did not change after stratifying by sex and race.

Cumulative marijuana use was not associated with ECG abnormalities.

Conclusion

In a middle‐aged US population, lifetime cumulative and occasional current marijuana use were not associated with increases in electrocardiogram abnormalities. This adds to the growing body of evidence that occasional marijuana use and cardiovascular disease events and markers of subclinical atherosclerosis are not associated.”

https://onlinelibrary.wiley.com/doi/abs/10.1111/add.15188?af=R

“Using cannabis not associated with heart abnormalities at middle age: study”  https://leaderpost.com/wellness/using-cannabis-not-associated-with-heart-abnormalities-at-middle-age-study/wcm/a43cafba-42b3-4b74-9ea7-50a2cf0d62e3/

The Impact of Cannabinoid Receptor 2 Deficiency on Neutrophil Recruitment and Inflammation.

View details for DNA and Cell Biology cover image“Neutrophil trafficking into damaged or infected tissues is essential for the initiation of inflammation, clearance of pathogens and damaged cells, and ultimately tissue repair. Neutrophil recruitment is highly dependent on the stepwise induction of adhesion molecules and promigratory chemokines and cytokines.

A number of studies in animal models have shown the efficacy of cannabinoid receptor 2 (CB2) agonists in limiting inflammation in a range of preclinical models of inflammation, including colitis, atherosclerosis, multiple sclerosis, and ischemia-reperfusion injury.

Recent work in preclinical models of inflammation raises two questions: by what mechanisms do CB2 agonists provide anti-inflammatory effects during acute inflammation and what challenges exist in the translation of CB2 modulating therapeutics into the clinic.”

Role of the endocannabinoidome in human and mouse atherosclerosis.

“The Endocannabinoid (eCB) system and its role in many physiological and pathological conditions is well described and accepted, and includes cardiovascular disorders. However, the eCB system has been expanded to an “-ome”; the endocannabinoidome (eCBome) that includes endocannabinoid-related mediators, their protein targets and metabolic enzymes, many of which significantly impact upon cardiometabolic health. These recent discoveries are here summarized with a special focus on their potential involvement in atherosclerosis. We described the role of classical components of the eCB system (eCBs, CB1 and CB2 receptors) and eCB-related lipids, their regulatory enzymes and molecular targets in atherosclerosis. Furthermore, since increasing evidence points to significant cross-talk between the eCBome and the gut microbiome and the gut microbiome and atherosclerosis, we explore the possibility that a gut microbiome – eCBome axis has potential implications in atherosclerosis.”

https://www.ncbi.nlm.nih.gov/pubmed/31448709

http://www.eurekaselect.com/174465/article

“Oral cannabinoid therapy reduces progression of atherosclerosis”  https://www.medscape.com/viewarticle/787468

“The active ingredient in marijuana that produces changes in brain messages appears to fight atherosclerosis — a hardening of the arteries.” https://www.webmd.com/heart-disease/news/20050406/marijuana-chemical-fights-hardened-arteries

Cannabinoids for Treating Cardiovascular Disorders: Putting Together a Complex Puzzle.

Image result for j microsc ultrastruct

“Cannabinoids have been increasingly gaining attention for their therapeutic potential in treating various cardiovascular disorders. These disorders include myocardial infarction, hypertension, atherosclerosis, arrhythmias, and metabolic disorders.

The aim of this review is to cover the main actions of cannabinoids on the cardiovascular system by examining the most recent advances in this field and major literature reviews.

It is well recognized that the actions of cannabinoids are mediated by either cannabinoid 1 or cannabinoid 2 receptors (CB2Rs). Endocannabinoids produce a triphasic response on blood pressure, while synthetic cannabinoids show a tissue-specific and species-specific response.

Blocking cannabinoid 1 receptors have been shown to be effective against cardiometabolic disorders, although this should be done peripherally. Blocking CB2Rs may be a useful way to treat atherosclerosis by affecting immune cells. The activation of CB2Rs was reported to be useful in animal studies of myocardial infarction and cardiac arrhythmia.

Although cannabinoids show promising effects in animal models, this does not always translate into human studies, and therefore, extensive clinical studies are needed to truly establish their utility in treating cardiovascular disease.”

https://www.ncbi.nlm.nih.gov/pubmed/30464888

New insights on atherosclerosis: A cross-talk between endocannabinoid systems with gut microbiota.

Logo of jctr

“The incidence of atherosclerosis is increasing rapidly all over the world. Inflammatory processes have outstanding role in coronary artery disease (CAD) etiology and other atherosclerosis manifestations. Recently attentions have been increased about gut microbiota in many fields of medicine especially in inflammatory diseases like atherosclerosis. Ineffectiveness in gut barrier functions and subsequent metabolic endotoxemia (caused by rise in plasma lipopolysaccharide levels) is associated with low-grade chronic inflammation i.e. a recognized feature of atherosclerosis. Furthermore, the role of trimethylamine-N-oxide (TMAO), a gut bacterial metabolite has been suggested in atherosclerosis development. On the other hand, the effectiveness of gut microbiota modulation that results in TMAO reduction has been investigated. Moreover, considerable evidence supports a role for the endocannabinoid system (ECS) in atherosclerosis pathology which affects gut microbiota, but their effects on atherosclerosis are controversial. Therefore, we presented some evidence about the relationship between gut microbiota and ECS in atherosclerosis. We also presented evidences that gut microbiota modulation by pre/probiotics can have significant influence on the ECS.

Even though there are many questions which have been unanswered, studies demonstrated that mucosal barrier function disruption and subsequent gut microbiota-derived endotoxemia could contribute to cardiometabolic diseases pathogenesis. As well, number of studies revealed that TMAO in systemic circulation can activate macrophages which lead to cholesterol accumulation and subsequent foam cells formation in atherosclerotic lesions. On the other hand, accumulating evidence proposes that ECS involved in many physiological processes that are related to maintenance of gut-barrier function and inflammation regulation. Hence, although present literature review provides beneficial evidence in support of crosstalk between ECS and gut microbiota, additional studies are needed to clarify whether gut microbiota modulation can alter ECS tone and inflammation levels or not.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203867/

Acute administration of beta-caryophyllene prevents endocannabinoid system activation during transient common carotid artery occlusion and reperfusion.

Image result for lipids in health and disease

“The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) has been shown to stimulate early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation.

The aim of the present study is to probe the possibility to prevent the molecular changes induced by the BCCAO/R with dietary natural compounds known to possess anti-inflammatory activity, such as the phytocannabinoid beta-caryophyllene (BCP).

CONCLUSIONS:

Collectively, the pre-treatment with BCP, likely acting as agonist for CB2 and PPAR-alpha receptors, modulates in a beneficial way the ECS activation and the lipoperoxidation, taken as indicative of oxidative stress. Furthermore, our results support the evidence that BCP may be used as a dietary supplement to control the physiological response to the hypoperfusion/reperfusion-induced oxidative stress.”

“beta-caryophyllene (BCP), a sesquiterpene found as a common constituent of the essential oils of numerous food plants and primary component in Cannabis sativa L., is a dietary phytocannabinoid acting as selective agonist for CB2 receptor and peroxisome-proliferator activating receptor alpha (PPAR-alpha)”
“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

Beta-caryophyllene protects diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors.

Chemico-Biological Interactions

“Beta-caryophyllene (BCP) is a phytocannabinoid possessing selective agonistic activity to cannabinoid type-2 receptors (CB2R) and peroxisome proliferator-activated receptors-α (PPAR-α). However, few studies reported the contribution of PPAR-γ receptors in BCP effects.

The aim of this study was to investigate the BCP effects on diet-induced dyslipidemia and vascular inflammation as well as the involvement of CB2R and PPAR-γ receptors.

BCP treatment was superior to pioglitazone in anti-inflammatory and anti-atherosclerotic measures. BCP may represent a more potent alternate to pioglitazone avoiding its side effects in the treatment of insulin resistance and vascular inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/30343038

https://www.sciencedirect.com/science/article/pii/S0009279718309347?via%3Dihub

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

The Endocannabinoid System and Heart Disease: The Role of Cannabinoid Receptor Type 2.

Image result for Cardiovasc Hematol Disord Drug Targets.

“Decades of research has provided evidence for the role of the endocannabinoid system in human health and disease. This versatile system, consisting of two receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and metabolic enzymes has been implicated in a wide variety of disease states, ranging from neurological disorders to cancer.

CB2 has gained much interest for its beneficial immunomodulatory role that can be obtained without eliciting psychotropic effects through CB1. Recent studies have shed light on a protective role of CB2 in cardiovascular disease, an ailment which currently takes more lives each year in Western countries than any other disease or injury.

By use of CB2 knockout mice and CB2-selective ligands, knowledge of how CB2 signaling affects atherosclerosis and ischemia has been acquired, providing a major stepping stone between basic science and translational clinical research.

Here, we summarize the current understanding of the endocannabinoid system in human pathologies and provide a review of the results from preclinical studies examining its function in cardiovascular disease, with a particular emphasis on possible CB2-targeted therapeutic interventions to alleviate atherosclerosis.”

https://www.ncbi.nlm.nih.gov/pubmed/29412125

“Researchers suggest that THC and other cannabinoids, which are active at CB2, the cannabinoid receptor expressed on immune cells, may be valuable in treating atherosclerosis.” https://www.medscape.com/viewarticle/787468

“Cardiovascular disease: New use for cannabinoids”  https://www.nature.com/articles/nrd1733

Cholesterol-induced stimulation of platelet aggregation is prevented by a hempseed-enriched diet.

Canadian Journal of Physiology and Pharmacology

“Hypercholesterolemia indirectly increases the risk for myocardial infarction by enhancing the ability of platelets to aggregate.

Diets enriched with polyunsaturated fatty acids (PUFAs) have been shown to reduce the detrimental effects of cholesterol on platelet aggregation.

This study investigated whether dietary hempseed, a rich source of PUFAs, inhibits platelet aggregation under normal and hypercholesterolemic conditions.

The results of this study demonstrate that when hempseed is added to a cholesterol-enriched diet, cholesterol-induced platelet aggregation returns to control levels.”

Prospects for the Use of Cannabinoid Receptor Ligands for the Treatment of Metabolic Syndrome and Atherosclerosis: Analysis of Experimental and Clinical Data.

Image result for vestn ross akad med nauk.

“An antagonist of central cannabinoid CB1 receptors rimonabant causes weight loss in patients with obesity and metabolic syndrome, improves blood lipid parameters, increases the adiponectin level, decreases the rate of glucose and glycosylated hemoglobin in patients with diabetes mellitus type-2. However, rimonabant adverse effects include depression, anxiety, nausea, and dizziness which are apparently due to the blockade of central CB1 receptors.

In mice with a high-calorie diet, we defined that the blockade of peripheral CB1 receptors prevents obesity, steatosis of the liver, improves lipid and carbohydrate metabolism. Experimental studies suggest that peripheral CB2 receptor agonists have antiatherogenic effect. To validate the expediency of clinical research of CB2 receptor agonists in patients with atherosclerosis the comparative analysis of antiatherogenic properties of cannabinoids should be performed. In addition, experiments are needed on the combination use of cannabinoids with well-known antiatherogenic agents, such as statins.”