Cannabinoids in the Treatment of Selected Mental Illnesses: Practical Approach and Overview of the Literature

pubmed logo

“Although an increasing number of patients suffering from mental illnesses self-medicate with cannabis, current knowledge about the efficacy and safety of cannabis-based medicine in psychiatry is still extremely limited. So far, no cannabis-based finished product has been approved for the treatment of a mental illness.

There is increasing evidence that cannabinoids may improve symptoms in autism spectrum disorder (ASD), Tourette syndrome (TS), anxiety disorders, and post-traumatic stress disorder (PTSD). According to surveys, patients often use cannabinoids to improve mood, sleep, and symptoms of attention deficit/hyperactivity disorder (ADHD).

There is evidence suggesting that tetrahydrocannabinol (THC) and THC-containing cannabis extracts, such as nabiximols, can be used as substitutes in patients with cannabis use disorder.

Preliminary evidence also suggests an involvement of the endocannabinoid system (ECS) in the pathophysiology of TS, ADHD, and PTSD. Since the ECS is the most important neuromodulatory system in the brain, it possibly induces beneficial effects of cannabinoids by alterations in other neurotransmitter systems.

Finally, the ECS is an important stress management system. Thus, cannabinoids may improve symptoms in patients with mental illnesses by reducing stress. Practically, cannabis-based treatment in patients with psychiatric disorders does not differ from other indications. The starting dose of THC-containing products should be low (1-2.5 mg THC/day), and the dose should be up-titrated slowly (by 1-2.5 mg every 3-5 days). The average daily dose is 10-20 mg THC. In contrast, cannabidiol (CBD) is mainly used in high doses>400 mg/day.”

https://pubmed.ncbi.nlm.nih.gov/38428836/

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-2256-0098

Individually tailored dosage regimen of full-spectrum Cannabis extracts for autistic core and comorbid symptoms: a real-life report of multi-symptomatic benefits

pubmed logo

“Autism Spectrum Disorders (ASD) may significantly impact the well-being of patients and their families. The therapeutic use of cannabis for ASD has gained interest due to its promising results and low side effects, but a consensus on treatment guidelines is lacking. In this study, we conducted a retrospective analysis of 20 patients with autistic symptoms who were treated with full-spectrum cannabis extracts (FCEs) in a response-based, individually-tailored dosage regimen. The daily dosage and relative proportions of cannabidiol (CBD) and tetrahydrocannabinol (THC) were adjusted based on treatment results following periodic clinical evaluation. Most patients (80%) were treated for a minimum of 6 months. We have used a novel, detailed online patient- or caregiver-reported outcome survey that inquired about core and comorbid symptoms, and quality of life. We also reviewed patients’ clinical files, and no individual condition within the autistic spectrum was excluded. This real-life approach enabled us to gain a clearer appraisal of the ample scope of benefits that FCEs can provide for ASD patients and their families. Eighteen patients started with a CBD-rich FCE titrating protocol, and in three of them, the CBD-rich (CBD-dominant) FCE was gradually complemented with low doses of a THC-rich (THC-dominant) FCE based on observed effects. Two other patients have used throughout treatment a blend of two FCEs, one CBD-rich and the other THC-rich. The outcomes were mainly positive for most symptoms, and only one patient from each of the two above-mentioned situations displayed important side effects one who has used only CBD-rich FCE throughout the treatment, and another who has used a blend of CBD-Rich and THC-rich FCEs. Therefore, after FCE treatment, 18 out of 20 patients showed improvement in most core and comorbid symptoms of autism, and in quality of life for patients and their families. For them, side effects were mild and infrequent. Additionally, we show, for the first time, that allotriophagy (Pica) can be treated by FCEs. Other medications were reduced or completely discontinued in most cases. Based on our findings, we propose guidelines for individually tailored dosage regimens that may be adapted to locally available qualified FCEs and guide further clinical trials.”

https://pubmed.ncbi.nlm.nih.gov/37671290/

https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1210155/full

The endocannabinoid system as a putative target for the development of novel drugs for the treatment of psychiatric illnesses

pubmed logo

“Cannabis is well established to impact affective states, emotion and perceptual processing, primarily through its interactions with the endocannabinoid system. While cannabis use is quite prevalent in many individuals afflicted with psychiatric illnesses, there is considerable controversy as to whether cannabis may worsen these conditions or provide some form of therapeutic benefit. The development of pharmacological agents which interact with components of the endocannabinoid system in more localized and discrete ways then via phytocannabinoids found in cannabis, has allowed the investigation if direct targeting of the endocannabinoid system itself may represent a novel approach to treat psychiatric illness without the potential untoward side effects associated with cannabis. Herein we review the current body of literature regarding the various pharmacological tools that have been developed to target the endocannabinoid system, their impact in preclinical models of psychiatric illness and the recent data emerging of their utilization in clinical trials for psychiatric illnesses, with a specific focus on substance use disorders, trauma-related disorders, and autism. We highlight several candidate drugs which target endocannabinoid function, particularly inhibitors of endocannabinoid metabolism or modulators of cannabinoid receptor signaling, which have emerged as potential candidates for the treatment of psychiatric conditions, particularly substance use disorder, anxiety and trauma-related disorders and autism spectrum disorders. Although there needs to be ongoing clinical work to establish the potential utility of endocannabinoid-based drugs for the treatment of psychiatric illnesses, the current data available is quite promising and shows indications of several potential candidate diseases which may benefit from this approach.”

https://pubmed.ncbi.nlm.nih.gov/37671673/

https://www.cambridge.org/core/journals/psychological-medicine/article/endocannabinoid-system-as-a-putative-target-for-the-development-of-novel-drugs-for-the-treatment-of-psychiatric-illnesses/52BFF0428246735E980829CFE8F03C67

A machine learning approach for understanding the metabolomics response of children with autism spectrum disorder to medical cannabis treatment

pubmed logo

“Autism spectrum disorder (ASD) is a neurodevelopmental condition impacting behavior, communication, social interaction and learning abilities. Medical cannabis (MC) treatment can reduce clinical symptoms in individuals with ASD. Cannabis-responsive biomarkers are metabolites found in saliva that change in response to MC treatment. Previously we showed levels of these biomarkers in children with ASD successfully treated with MC shift towards the physiological levels detected in typically developing (TD) children, and potentially can quantify the impact. Here, we tested for the first time the capabilities of machine learning techniques applied to our dynamic, high-resolution and rich feature dataset of cannabis-responsive biomarkers from a limited number of children with ASD before and after MC treatment and a TD group to identify: (1) biomarkers distinguishing ASD and TD groups; (2) non-cannabinoid plant molecules with synergistic effects; and (3) biomarkers associated with specific cannabinoids. We found: (1) lysophosphatidylethanolamine can distinguish between ASD and TD groups; (2) novel phytochemicals contribute to the therapeutic effects of MC treatment by inhibition of acetylcholinesterase; and (3) THC- and CBD-associated cannabis-responsive biomarkers are two distinct groups, while CBG is associated with some biomarkers from both groups.”

https://pubmed.ncbi.nlm.nih.gov/37608004/

https://www.nature.com/articles/s41598-023-40073-0

Early Administration of the Phytocannabinoid Cannabidivarin Prevents the Neurobehavioral Abnormalities Associated with the Fmr1-KO Mouse Model of Fragile X Syndrome

pubmed logo

“Phytocannabinoids, including the non-addictive cannabis component cannabidivarin (CBDV), have been reported to hold therapeutic potential in several neurodevelopmental disorders (NDDs). Nonetheless, the therapeutic value of phytocannabinoids for treating Fragile X syndrome (FXS), a major NDD, remains unexplored. Here, we characterized the neurobehavioral effects of CBDV at doses of 20 or 100 mg/kg in the Fmr1-knockout (Fmr1-KO) mouse model of FXS using two temporally different intraperitoneal regimens: subchronic 10-day delivery during adulthood (Study 1: rescue treatment) or chronic 5-week delivery at adolescence (Study 2: preventive treatment). Behavioral tests assessing FXS-like abnormalities included anxiety, locomotor, cognitive, social and sensory alterations. Expression of inflammatory and plasticity markers was investigated in the hippocampus and prefrontal cortex. When administered during adulthood (Study 1), the effects of CBDV were marginal, rescuing at the lower dose only the acoustic hyper-responsiveness of Fmr1-KO mice and at both doses their altered hippocampal expression of neurotrophins. When administered during adolescence (Study 2), CBDV at both doses prevented the cognitive, social and acoustic alterations of adult Fmr1-KO mice and modified the expression of several inflammatory brain markers in both wild-type littermates and mutants. These findings warrant the therapeutic potential of CBDV for preventing neurobehavioral alterations associated with FXS, highlighting the relevance of its early administration.”

https://pubmed.ncbi.nlm.nih.gov/37566006/

“Overall, these data demonstrate that CBDV, when administered chronically and starting at juvenile age, holds a solid therapeutic potential for FXS as it prevented the most relevant behavioral alterations shown by Fmr1-KO mice.”

https://www.mdpi.com/2073-4409/12/15/1927

The therapeutic potential of purified cannabidiol

pubmed logo

“The use of cannabidiol (CBD) for therapeutic purposes is receiving considerable attention, with speculation that CBD can be useful in a wide range of conditions. Only one product, a purified form of plant-derived CBD in solution (Epidiolex), is approved for the treatment of seizures in patients with Lennox-Gastaut syndrome, Dravet syndrome, or tuberous sclerosis complex. Appraisal of the therapeutic evidence base for CBD is complicated by the fact that CBD products sometimes have additional phytochemicals (like tetrahydrocannabinol (THC)) present, which can make the identification of the active pharmaceutical ingredient (API) in positive studies difficult. The aim of the present review is to critically review clinical studies using purified CBD products only, in order to establish the upcoming indications for which purified CBD might be beneficial.

The areas in which there is the most clinical evidence to support the use of CBD are in the treatment of anxiety (positive data in 7 uncontrolled studies and 17 randomised controlled trials (RCTs)), psychosis and schizophrenia (positive data in 1 uncontrolled study and 8 RCTs), PTSD (positive data in 2 uncontrolled studies and 4 RCTs) and substance abuse (positive data in 2 uncontrolled studies and 3 RCTs). Seven uncontrolled studies support the use of CBD to improve sleep quality, but this has only been verified in one small RCT. Limited evidence supports the use of CBD for the treatment of Parkinson’s (3 positive uncontrolled studies and 2 positive RCTs), autism (3 positive RCTs), smoking cessation (2 positive RCTs), graft-versus-host disease and intestinal permeability (1 positive RCT each). Current RCT evidence does not support the use of purified oral CBD in pain (at least as an acute analgesic) or for the treatment of COVID symptoms, cancer, Huntington’s or type 2 diabetes.

In conclusion, published clinical evidence does support the use of purified CBD in multiple indications beyond epilepsy. However, the evidence base is limited by the number of trials only investigating the acute effects of CBD, testing CBD in healthy volunteers, or in very small patient numbers. Large confirmatory phase 3 trials are required in all indications.”

https://pubmed.ncbi.nlm.nih.gov/37312194/

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-023-00186-9

A randomized, controlled trial of ZYN002 cannabidiol transdermal gel in children and adolescents with fragile X syndrome (CONNECT-FX)

“Background: Fragile X syndrome (FXS) is associated with dysregulated endocannabinoid signaling and may therefore respond to cannabidiol therapy.

Design: CONNECT-FX was a double-blind, randomized phase 3 trial assessing efficacy and safety of ZYN002, transdermal cannabidiol gel, for the treatment of behavioral symptoms in children and adolescents with FXS.

Methods: Patients were randomized to 12 weeks of ZYN002 (250 mg or 500 mg daily [weight-based]) or placebo, as add-on to standard of care. The primary endpoint assessed change in social avoidance (SA) measured by the Aberrant Behavior Checklist-Community Edition FXS (ABC-CFXS) SA subscale in a full cohort of patients with a FXS full mutation, regardless of the FMR1 methylation status. Ad hoc analyses assessed efficacy in patients with ≥ 90% and 100% methylation of the promoter region of the FMR1 gene, in whom FMR1 gene silencing is most likely.

Results: A total of 212 patients, mean age 9.7 years, 75% males, were enrolled. A total of 169 (79.7%) patients presented with ≥ 90% methylation of the FMR1 promoter and full mutation of FMR1. Although statistical significance for the primary endpoint was not achieved in the full cohort, significant improvement was demonstrated in patients with ≥ 90% methylation of FMR1 (nominal P = 0.020). This group also achieved statistically significant improvements in Caregiver Global Impression-Change in SA and isolation, irritable and disruptive behaviors, and social interactions (nominal P-values: P = 0.038, P = 0.028, and P = 0.002). Similar results were seen in patients with 100% methylation of FMR1. ZYN002 was safe and well tolerated. All treatment-emergent adverse events (TEAEs) were mild or moderate. The most common treatment-related TEAE was application site pain (ZYN002: 6.4%; placebo: 1.0%).

Conclusions: In CONNECT-FX, ZYN002 was well tolerated in patients with FXS and demonstrated evidence of efficacy with a favorable benefit risk relationship in patients with ≥ 90% methylation of the FMR1 gene, in whom gene silencing is most likely, and the impact of FXS is typically most severe.”

https://pubmed.ncbi.nlm.nih.gov/36434514/

https://jneurodevdisorders.biomedcentral.com/articles/10.1186/s11689-022-09466-6

Terpene-Enriched CBD oil for treating autism-derived symptoms unresponsive to pure CBD: Case report

Frontiers - Crunchbase Company Profile & Funding

“Cannabidiol (CBD) rich products are successfully used in some countries for treating symptoms associated with autism spectrum disorder (ASD). Yet, CBD provides insufficient intervention in some individuals, or for some characterizing symptoms of ASD, raising the need for improved compositions. The current study presents a case wherein pure CBD was sufficient for treating ASD during childhood and early adolescence. However, it became insufficient during puberty accompanied by increased hyperactivity, agitation, and frequent severe aggressive behavior. Increasing the CBD dose did not result in significant improvement. Enriching the pure CBD with a carefully selected blend of anxiolytic and calming terpenes, resulted in gradual elimination of those aggressive events. Importantly, this was achieved with a significantly reduced CBD dose, being less than one-half the amount used when treating with pure CBD. This case demonstrates a strong improvement in efficacy due to terpene enrichment, where pure CBD was not sufficient. Combined with terpenes’ high safety index and the ease with which they can be incorporated into cannabinoid-containing products, terpene-enriched CBD products may provide a preferred approach for treating ASD and related conditions. The careful selection of terpenes to be added enables maximizing the efficacy and tailoring the composition to particular and changing needs of ASD subjects, e.g., at different times of the day (daytime vs nighttime products).”

https://pubmed.ncbi.nlm.nih.gov/36386202/

“To summarize, the low toxicity levels of terpenes, the ease with which they can be incorporated into cannabinoid products in an industrial setting, and above all–the strong therapeutic benefit of some of them in conjunction with CBD, as demonstrated herein, highlights the great therapeutic implication of terpene-enriched CBD products in treating ASD and associated conditions. Addition of the selected terpenes reduced the required CBD dosages by more than a half and critically, resulted in a major reduction in aggressive behavior without notable side effects.”

https://www.frontiersin.org/articles/10.3389/fphar.2022.979403/full

Implications of the endocannabinoid system and the therapeutic action of cannabinoids in autism spectrum disorder: A literature review

Pharmacology Biochemistry and Behavior

“Autism spectrum disorder (ASD) is a neurodevelopmental disorder, onset in early childhood and associated with cognitive, social, behavioral, and sensory impairments. The pathophysiology is still unclear, and it is believed that genetic and environmental factors are fully capable of influencing ASD, especially cell signaling and microglial functions. Furthermore, the endocannabinoid system (ECS) participates in the modulation of various brain processes and is also involved in the pathophysiological mechanisms of this condition. Due to the health and quality of life impacts of autism for the patient and his/her family and the lack of effective medications, the literature has elucidated the possibility that Cannabis phytocannabinoids act favorably on ASD symptoms, probably through the modulation of neurotransmitters, in addition to endogenous ligands derived from arachidonic acid, metabolizing enzymes and even transporters of the membrane. These findings support the notion that there are links between key features of ASD and ECS due to the favorable actions of cannabidiol (CBD) and other cannabinoids on symptoms related to behavioral and cognitive disorders, as well as deficits in communication and social interaction, hyperactivity, anxiety and sleep disorders. Thus, phytocannabinoids emerge as therapeutic alternatives for ASD.”

https://pubmed.ncbi.nlm.nih.gov/36379443/

“Pure or enriched CBD is favorable for the treatment of symptoms and comorbidities related to ASD.”

https://www.sciencedirect.com/science/article/abs/pii/S009130572200171X?via%3Dihub

Medical cannabis for the treatment of comorbid symptoms in children with autism spectrum disorder: An interim analysis of biochemical safety

Frontiers - Crunchbase Company Profile & Funding

“Background: Autistic Spectrum Disorder (ASD) is a common neurodevelopmental disorder and no effective treatment for the core symptoms is currently available. The present study is part of a larger clinical trial assessing the effects of cannabis oil on autism co-morbidities. 

Objectives: The aim of the present study was to assess the safety of a CBD-rich oil treatment in children and adolescents with ASD. 

Methods: Data from 59 children and young adults (ages 5-25 years) from a single-arm, ongoing, prospective, open-label, one center, phase III study was analyzed. Participants received the Nitzan Spectrum® Oil, with cannabis extracts infused in medium chain triglyceride (MCT) oil with a cannabidiol:THC ratio of 20:1, for 6 months. Blood analysis was performed before treatment initiation, and after 3 months. Complete blood count, glucose, urea, creatinine, electrolytes, liver enzymes (AST, ALT, gamma glutamyl transferase), bilirubin, lipid profile, TSH, FT4, thyroid antibodies, prolactin, and testosterone measurements were performed at baseline, prior to starting treatment and at study midpoint, after 3 months of treatment. 

Results: 59 children (85% male and 15% female) were followed for 18 ± 8 weeks (mean ±SD). The mean total daily dose was 7.88 ± 4.24 mg/kg body weight. No clinically significant differences were found in any of the analytes between baseline and 3 months follow up. Lactate dehydrogenase was significantly higher before treatment (505.36 ± 95.1 IU/l) as compared to its level after 3 months of treatment (470.55 ± 84.22 IU/L) (p = 0.003). FT4 was significantly higher after 3 months of treatment (15.54 ± 1.9) as compared to its level before treatment (15.07 ± 1.88) (p = 0.03), as was TSH [(2.34 ± 1.17) and (2.05 ± 1.02)] before and after 3 months of treatment, respectively (p = 0.01). However, all these values were within normal range. A comparison of the group with additional medications (n = 14) to those who received solely medical cannabis (n = 45) showed no difference in biochemical analysis, including liver enzymes, which remained stable, except for change in potassium level which was significantly higher in the group that did not receive additional medications (0.04 ± 0.37) compared to the group receiving concomitant drug therapy (-0.2 ± 0.33) (p = 0.04). A comparison of patients who received a high dose of the cannabis oil (upper quartile-16 patients), with those receiving a low dose (lower quartile-14 patients) showed no significant difference between the two groups, except for the mean change of total protein, which was significantly higher among patients receiving high dose of CBD (0.19 ± 2.74) compared to those receiving a low dose of CBD (1.71 ± 2.46 (p = 0.01), and mean change in number of platelets, that was significantly lower among patients who received high dose of CBD (13.46 ± 31.38) as compared to those who received low dose of CBD (29.64 ± 26.2) (p = 0.0007). However, both of these changes lack clinical significance. 

Conclusion: CBD-rich cannabis oil (CBD: THC 20:1), appears to have a good safety profile. Long-term monitoring with a larger number of participants is warranted.”

https://pubmed.ncbi.nlm.nih.gov/36249785/

https://www.frontiersin.org/articles/10.3389/fphar.2022.977484/full