“Over the years, scientific researches have validated the healing benefits of many psychopharmacotherapeutic plant-based drugs to ameliorate psychiatric disorders. In contrast, the use of chemical procedures to isolate and purify specific compounds from plants that have been used to treat autism spectrum disorders (ASDs) and its clinical features may contribute to improve the quality of life of many patients. Also, herbal pharmacological treatments could improve the core symptoms of autism with fewer side effects. This review will focus on the uses and actions of phytopharmaceuticals in the behavioral conditions of ASDs. A large number of natural compound-based plant drugs have been tested in murine models of autism and in clinical trials with remarkable success in reversing the core and associated behaviors with autism such as flavonoids, cannabinoids, curcuminoids, piperine, resveratrol, and bacosides. This plant-based drug alternative is safer given that many psychiatric disorders and neurodegenerative pathologies do not often respond well to currently prescribed medications or have significant side effects. However, it is noteworthy to consider the need for large clinical trials to determine safety and efficacy. Many results are based on case reports or small size samples, and often the studies are open label. Standardization of procedures (i.e., purity and concentrations) and quality controls are strictly required to ensure the absence of side effects.”
Category Archives: Autism
Brief Report: Cannabidiol-Rich Cannabis in Children with Autism Spectrum Disorder and Severe Behavioral Problems-A Retrospective Feasibility Study.
“Anecdotal evidence of successful cannabis treatment in autism spectrum disorder (ASD) are accumulating but clinical studies are lacking. This retrospective study assessed tolerability and efficacy of cannabidiol-rich cannabis, in 60 children with ASD and severe behavioral problems (age = 11.8 ± 3.5, range 5.0-17.5; 77% low functioning; 83% boys). Efficacy was assessed using the Caregiver Global Impression of Change scale. Adverse events included sleep disturbances (14%) irritability (9%) and loss of appetite (9%). One girl who used higher tetrahydrocannabinol had a transient serious psychotic event which required treatment with an antipsychotic. Following the cannabis treatment, behavioral outbreaks were much improved or very much improved in 61% of patients. This preliminary study supports feasibility of CBD-based cannabis trials in children with ASD.”
https://www.ncbi.nlm.nih.gov/pubmed/30382443
https://link.springer.com/article/10.1007%2Fs10803-018-3808-2
Cannabidiol as a suggested candidate for treatment of autism spectrum disorder.
“Autism Spectrum Disorder (ASD) is characterized by persistent deficits in social communication, restricted and repetitive patterns of behavior, interests, or activities and often intellectual disabilities.
No effective treatment for the core symptoms of ASD is currently available.
There is increasing interest in cannabinoids, especially cannabidiol (CBD), as monotherapy or add-on treatment for the core symptoms and co-morbidities of ASD.
In this review we summarize the available pre-clinical and clinical data regarding the safety and effectiveness of medical cannabis, including CBD, in young ASD patients.
Cannabidiol seems to be a candidate for the treatment of ASD.”
https://www.ncbi.nlm.nih.gov/pubmed/30171992
https://www.sciencedirect.com/science/article/pii/S0278584618304445?via%3Dihub
Palmitoylethanolamide as adjunctive therapy for autism: Efficacy and safety results from a randomized controlled trial.
“Inflammation as well as glutamate excitotoxicity have been proposed to participate in the propagation of autism. Palmitoylethanolamide (PEA) is an endocannabinoid proven to prevent glutamatergic toxicity and inhibit inflammatory responses simultaneously.
The present randomized, parallel group, double-blind placebo-controlled trial is the first study depicted to probe the efficacy of co-treatment with risperidone and PEA over 10 weeks in children with autism.
Seventy children (aged 4-12 years) with autism and moderate to severe symptoms of irritability were randomly assigned to two treatment regimens. The study outcomes were measured using the Aberrant Behavior Checklist-Community Edition (ABC-C). At trial endpoint (week 10), combination of PEA and risperidone had superior efficacy in ameliorating the ABC-irritability and hyperactivity/noncompliance symptoms (Cohen’s d, 95% confidence interval (CI) = 0.94, 0.41 to 1.46, p = 0.001) compared with a risperidone plus placebo regimen. Interestingly, effect of combination treatment on hyperactivity symptoms was also observed at trial midpoint (week 5) but with a smaller effect size (d = 0.53, p = 0.04) than that at the endpoint (d = 0.94, p = 0.001). Meanwhile, there was a trend toward significance for superior effect of risperidone plus PEA over risperidone plus placebo on inappropriate speech at trial endpoint (d = 0.51, p = 0.051). No significant differences existed between the two treatment groups for the other two ABC-C subscales (lethargy/social withdrawal and stereotypic behavior).
The findings suggest that PEA may augment therapeutic effects of risperidone on autism-related irritability and hyperactivity. Future studies are warranted to investigate whether PEA can serve as a stand-alone treatment for autism.”
https://www.ncbi.nlm.nih.gov/pubmed/29807317
https://www.journalofpsychiatricresearch.com/article/S0022-3956(17)31405-X/fulltext
Cannabidiol Based Medical Cannabis in Children with Autism- a Retrospective Feasibility Study
“Objective: This retrospective study assessed safety, tolerability and efficacy of cannabidiol (CBD) based medical cannabis, as an adjuvant therapy, for refractory behavioral problems in children with ASD.
Background: Anecdotal evidence of successful cannabis treatment in children with autism spectrum disorder (ASD) are accumulating but formal studies are lacking.
Design/Methods: Sixty children with ASD (age = 11.8± 3.5, range 5.0–17.5; 77% low functioning; 83% boys) were treated with oral CBD and tetrahydrocannabinol (THC) at a ratio of 20:1. The dose was up-titrated to effect (maximal CBD dose − 10mg/kg/d). Tolerability and efficacy were assessed using a modified Liverpool Adverse Events Profile, the Caregiver Global Impression of Change (CGIC) scale, the Home Situations Questionnaire–Autism Spectrum Disorder (HSQ-ASD) and the Autism Parenting Stress Index (APSI).
Results: Following the cannabis treatment, behavioral outbreaks were much improved or very much improved (on the CGIC scale) in 61% of patients. The anxiety and communication problems were much or very much improved in 39% and 47% respectively. Disruptive behaviors, were improved by 29% from 4.74±1.82 as recorded at baseline on the HSQ-ASD to 3.36±1.56 following the treatment. Parents reported less stress as reflected in the APSI scores, changing by 33% from 2.04±0.77 to 1.37±0.59. The effect on all outcome measures was more apparent in boys with non-syndromic ASD. Adverse events included sleep disturbances (14%) irritability (9%) and loss of appetite (9%).
Conclusions: This preliminary study support the feasibility of CBD based medical cannabis as a promising treatment option for refractory behavioral problems in children with ASD. Based on these promising results, we have launched a large, double blind, placebo controlled cross-over trial with 120 participants (NCT02956226).”
Plasma anandamide concentrations are lower in children with autism spectrum disorder.
“Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restricted, stereotyped behaviors and impairments in social communication.
Although the underlying biological mechanisms of ASD remain poorly understood, recent preclinical research has implicated the endogenous cannabinoid (or endocannabinoid), anandamide, as a significant neuromodulator in rodent models of ASD. Despite this promising preclinical evidence, no clinical studies to date have tested whether endocannabinoids are dysregulated in individuals with ASD.
Here, we addressed this critical gap in knowledge by optimizing liquid chromatography-tandem mass spectrometry methodology to quantitatively analyze anandamide concentrations in banked blood samples collected from a cohort of children with and without ASD (N = 112).
FINDINGS:
Anandamide concentrations significantly differentiated ASD cases (N = 59) from controls (N = 53), such that children with lower anandamide concentrations were more likely to have ASD (p = 0.041). In keeping with this notion, anandamide concentrations were also significantly lower in ASD compared to control children (p = 0.034).
CONCLUSIONS:
These findings are the first empirical human data to translate preclinical rodent findings to confirm a link between plasma anandamide concentrations in children with ASD. Although preliminary, these data suggest that impaired anandamide signaling may be involved in the pathophysiology of ASD.”
https://www.ncbi.nlm.nih.gov/pubmed/29564080
https://molecularautism.biomedcentral.com/articles/10.1186/s13229-018-0203-y
Oral cannabis extracts as a promising treatment for the core symptoms of autism spectrum disorder: Preliminary experience in Chilean patients
The Endocannabinoid System and Autism Spectrum Disorders: Insights from Animal Models.
“Autism spectrum disorder (ASD) defines a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction with restricted or repetitive motor movements, frequently associated with general cognitive deficits. Although it is among the most severe chronic childhood disorders in terms of prevalence, morbidity, and impact to the society, no effective treatment for ASD is yet available, possibly because its neurobiological basis is not clearly understood hence specific drugs have not yet been developed. The endocannabinoid (EC) system represents a major neuromodulatory system involved in the regulation of emotional responses, behavioral reactivity to context, and social interaction. Furthermore, the EC system is also affected in conditions often present in subsets of patients diagnosed with ASD, such as seizures, anxiety, intellectual disabilities, and sleep pattern disturbances. Despite the indirect evidence suggestive of an involvement of the EC system in ASD, only a few studies have specifically addressed the role of the EC system in the context of ASD. This review describes the available data on the investigation of the presence of alterations of the EC system as well as the effects of its pharmacological manipulations in animal models of ASD-like behaviors.”
Role of Endocannabinoids on Neuroinflammation in Autism Spectrum Disorder Prevention
Autism Spectrum Disorder (ASD) disease has become a mounting socio-economical alarm around the world. Neuroinflammtion had been shown in postmortem brain specimens from ASD patients.
The Endocannabinoids System (ES) consists of a family of locally produced, short-lived, endogenous, phospholipid-derived agonists (endocannabinoids) that control energy balance and body composition. The growing number of medical benefits of ES, such as their ability to regulate processes like neuroinflammation, neurogenesis and memory, raise the question of their potential role as a preventive treatment of ASD.
The complex nature of ASD advocates a multimodal drug approach that could protect from the various processes underlying neurodegeneration and thus, at minimum, delay the pathological process. The expected benefit from a chronic treatment aimed at stimulating the endocannabinoid system is a delayed progression of ASD: i.e., reduced inflammation, sustained potential for neurogenesis, and delayed memory impairment. Such results could lead to new therapeutic strategies that target the inflammation and the decline in neurogenesis associated ASD.”
Endocannabinod Signal Dysregulation in Autism Spectrum Disorders: A Correlation Link between Inflammatory State and Neuro-Immune Alterations.
“Several studies highlight a key involvement of endocannabinoid (EC) system in autism pathophysiology. The EC system is a complex network of lipid signaling pathways comprised of arachidonic acid-derived compounds (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. In addition to autism, the EC system is also involved in several other psychiatric disorders (i.e., anxiety, major depression, bipolar disorder and schizophrenia). This system is a key regulator of metabolic and cellular pathways involved in autism, such as food intake, energy metabolism and immune system control. Early studies in autism animal models have demonstrated alterations in the brain’s EC system. Autism is also characterized by immune system dysregulation. This alteration includes differential monocyte and macrophage responses, and abnormal cytokine and T cell levels. EC system dysfunction in a monocyte and macrophagic cellular model of autism has been demonstrated by showing that the mRNA and protein for CB2 receptor and EC enzymes were significantly dysregulated, further indicating the involvement of the EC system in autism-associated immunological disruptions. Taken together, these new findings offer a novel perspective in autism research and indicate that the EC system could represent a novel target option for autism pharmacotherapy.” https://www.ncbi.nlm.nih.gov/pubmed/28671614