Marijuana treatments for autoimmune disorders

“Researchers from the University of South Carolina say that tetrahydrocannabinol, the principal constituent of marijuana, may have another medical use – treating those with autoimmune disorders.

Tetrahydrocannabinol (THC) is known to have analgesic effects so can be used to treat pain. It also aids relaxation and can reduce feelings of nausea and stimulate appetite…

Now, a new study, published in the Journal of Biological Chemistry, explores how analgesicmicroRNAs are influenced by THC.

MicroRNAs (miRNAs) are small, single-stranded, non-coding RNAs that play a vital role in regulating gene expression. And the authors claim that the ability to alter miRNA expression may be the key to successful treatment for many autoimmune diseases, including multiple sclerosisarthritis and type 1 diabetes.”

More: http://www.medicalnewstoday.com/articles/269432.php

Control of Spasticity in a Multiple Sclerosis Model is mediated by CB1, not CB2, Cannabinoid Receptors

Figure 1

“There is increasing evidence to suggest that cannabis can ameliorate muscle-spasticity in multiple sclerosis, as was objectively shown in experimental autoimmune encephalomyelitis models. The purpose of this study was to investigate further the involvement of CB1 and CB2 cannabinoid receptors in the control of experimental spasticity…

Conclusions and Implications:

The CB1 receptor controls spasticity and cross-reactivity to this receptor appears to account for the therapeutic action of some CB2 agonists.

 As cannabinoid-induced psychoactivity is also mediated by the CB1 receptor, it will be difficult to truly dissociate the therapeutic effects from the well-known, adverse effects of cannabinoids when using cannabis as a medicine.

The lack of knowledge on the true diversity of the cannabinoid system coupled with the lack of total specificity of current cannabinoid reagents makes interpretation of in vivo results difficult, if using a purely pharmacological approach.

Gene knockout technology provides an important tool in target validation and indicates that the CB1 receptor is the main cannabinoid target for an anti-spastic effect.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189718/

Therapeutic potential of cannabinoid medicines.

Drug Testing and Analysis

“Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines.

The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology.

In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24006213

http://onlinelibrary.wiley.com/doi/10.1002/dta.1529/abstract

Cannabinoids Decrease the Th17 Inflammatory Autoimmune Phenotype.

“Cannabinoids, the Cannabis constituents, are known to possess anti-inflammatory properties but the mechanisms involved are not understood. Here we show that the main psychoactive cannabinoid, Δ-9-tetrahydrocannabinol (THC), and the main nonpsychoactive cannabinoid, cannabidiol (CBD), markedly reduce the Th17 phenotype which is known to be increased in inflammatory autoimmune pathologies such as Multiple Sclerosis…

Pretreatment with CBD also resulted in increased levels of the anti-inflammatory cytokine IL-10. Interestingly, CBD and THC did not affect the levels of TNFα and IFNγ. The downregulation of IL-17 secretion by these cannabinoids does not seem to involve the CB1, CB2, PPARγ, 5-HT1A or TRPV1 receptors…

In conclusion, the results show a unique cannabinoid modulation of the autoimmune cytokine milieu combining suppression of the pathogenic IL-17 and IL-6 cytokines along with boosting the expression of the anti-inflammatory cytokine IL-10.”

http://www.ncbi.nlm.nih.gov/pubmed/23892791

Anti-inflammatory property of the cannabinoid receptor-2-selective agonist JWH-133 in a rodent model of autoimmune uveoretinitis.

“Previous studies have shown that cannabinoids have anti-inflammatory and immune-modulating effects, but the precise mechanisms of action remain to be elucidated.

In this study, we investigated the effect of JWH 133, a selective agonist for cannabinoid receptor 2, the main receptor expressed on immune cells, in a model of autoimmune disease, experimental autoimmune uveoretinitis (EAU).

JWH 133 suppressed EAU in a dose-dependent manner (0.015-15 mg/kg), and the suppressive effect could be achieved in the disease-induction stage and the effector stage. Leukocytes from mice, which had been treated with JWH 133, had diminished responses to retinal peptide and mitogen Con A stimulation in vitro. In vivo JWH 133 treatment also abrogated leukocyte cytokine/chemokine production. Further in vitro studies indicated that JWH 133 down-regulated the TLR4 via Myd88 signal transduction, which may be responsible for its moderate, suppressive effect on antigen presentation. In vivo JWH 133 treatment (1 mg/kg) also suppressed leukocyte trafficking (rolling and infiltration) in inflamed retina as a result of an effect on reducing adhesion molecules CD162 (P-selectin glycoprotein ligand 1) and CD11a (LFA-1) expression on T cells.

In conclusion, the cannabinoid agonist JWH 133 has a high in vivo, anti-inflammatory property and may exert its effect via inhibiting the activation and function of autoreactive T cells and preventing leukocyte trafficking into the inflamed tissue.”

Full text: http://www.jleukbio.org/content/82/3/532.long

Cannabis Compounds Reduce Multi-Drug Resistant Infections

“Cannabis Science, Inc. Dr. Robert Melamede, PhD., Director and Chief Science Officer, reported to the Board on the current state of research into the use of natural plant cannabinoids to reduce the spread of drug-resistant bacteria, including methicillin-resistant Staphyloccus aureus (MRSA), and the prospects for development of topical whole-cannabis treatments.

According to studies published in the Journal of the American Medical Association and by the Center for Disease Control in 2007, MRSA is responsible for more than 18,500 hospital-stay related deaths each year, and increased direct healthcare costs of as much as $9.7 billion.

Dr. Melamede stated, “Research into use of whole cannabis extracts and multi-cannabinoid compounds has provided the scientific rationale for medical marijuana’s efficacy in treating some of the most troubling diseases mankind now faces, including infectious diseases such as the flu and HIV, autoimmune diseases such as ALS (Lou Gehrig’s Disease), multiple sclerosis, arthritis, and diabetes, neurological conditions such as Alzheimer’s, stroke and brain injury, as well as numerous forms of cancer. One common element of these diseases is that patients often suffer extended hospital stays, risking development of various Staphyloccus infections including MRSA. A topical, whole-cannabis treatment for these infections is a functional complement to our cannabis extract-based lozenge.””

More: http://www.drugs.com/clinical_trials/cannabis-compounds-reduce-multi-resistant-infections-7080.html

The endocannabinoid system and its therapeutic exploitation.

Image result for Nat Rev Drug Discov.

“The term ‘endocannabinoid’ – originally coined in the mid-1990s after the discovery of membrane receptors for the psychoactive principle in Cannabis, Delta9-tetrahydrocannabinol and their endogenous ligands – now indicates a whole signalling system that comprises cannabinoid receptors, endogenous ligands and enzymes for ligand biosynthesis and inactivation. This system seems to be involved in an ever-increasing number of pathological conditions. With novel products already being aimed at the pharmaceutical market little more than a decade since the discovery of cannabinoid receptors, the endocannabinoid system seems to hold even more promise for the future development of therapeutic drugs. We explore the conditions under which the potential of targeting the endocannabinoid system might be realized in the years to come.”  http://www.ncbi.nlm.nih.gov/pubmed/15340387

http://www.nature.com/nrd/journal/v3/n9/full/nrd1495.html

The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis

“The ability of cannabinoids to modulate both inflammatory and degenerative neuronal damage prompted investigations on the potential benefits of such compounds in multiple sclerosis (MS) and in animal models of this disorder. Here we measured endocannabinoid levels, metabolism and binding, and physiological activities in 26 patients with MS (17 females, aged 19–43 years), 25 healthy controls and in mice with experimental autoimmune encephalomyelitis (EAE), a preclinical model of MS.

 Our results show that MS and EAE are associated with significant alterations of the endocannabinoid system. We found that anandamide (AEA), but not 2-arachidonoylglycerol (2-AG), was increased in the CSF of relapsing MS patients. AEA concentrations were also higher in peripheral lymphocytes of these patients, an effect associated with increased synthesis and reduced degradation of this endocannabinoid. Increased synthesis, reduced degradation, and increased levels of AEA were also detected in the brains of EAE mice in the acute phase of the disease, possibly accounting for its anti-excitotoxic action in this disorder. Accordingly, neurophysiological recordings from single neurons confirmed that excitatory transmission in EAE slices is inhibited by CB1 receptor activation, while inhibitory transmission is not.

Our study suggests that targeting the endocannabinoid system might be useful for the treatment of MS.”

http://brain.oxfordjournals.org/content/130/10/2543.abstract

Cannabidiol as an Emergent Therapeutic Strategy for Lessening the Impact of Inflammation on Oxidative Stress

Figure 1

“Growing evidence suggests that the endocannabinoid system, which includes the CB1 and CB2 G protein-coupled receptors and their endogenous lipid ligands, may be an area that is ripe for therapeutic exploitation. In this context, the related nonpsychotropic cannabinoid cannabidiol, which may interact with the endocannabinoid system, but has actions that are distinct, offers promise as a prototype for anti-inflammatory drug development.

This review discusses recent studies suggesting that cannabidiol may have utility in treating a number of human diseases and disorders now known to involve activation of the immune system and associated oxidative stress, as a contributor to their etiology and progression. These include rheumatoid arthritis, types I and II diabetes, atherosclerosis, Alzheimer’s disease, hypertension, the metabolic syndrome, ischemia-reperfusion injury, depression, and neuropathic pain.

Cannabidiol (CBD) is the major nonpsychotropic cannabinoid compound derived from the plant Cannabis sativa, commonly known as marijuana…

Conclusions

Inflammation and oxidative stress are intimately involved in the genesis of many human diseases. Unraveling that relationship therapeutically has proven challenging, in part because inflammation and oxidative stress “feed off” each other. However, CBD would seem to be a promising starting point for further drug development given its anti-oxidant (although relatively modest) and anti-inflammatory actions on immune cells, such as macrophages and microglia. CBD also has the advantage of not having psychotropic side effects. Studies on models of human diseases support the idea that CBD attenuates inflammation far beyond its antioxidant properties, for example, by targeting inflammation-related intracellular signaling events. The details on how CBD targets inflammatory signaling remain to be defined.

The therapeutic utility of CBD is a relatively new area of investigation that portends new discoveries on the interplay between inflammation and oxidative stress, a relationship that underlies tissue and organ damage in many human diseases.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085542/

From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

Image result for West Indian Med J

“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”

http://www.ncbi.nlm.nih.gov/pubmed/23155985