Cannabinoids and the immune system: an overview.

“Cannabinoids can influence the immune network. Data on the impact of exogenous cannabinoid ligands on immune function serve not only to understand how the endocannabinoid system modulates immune phenomena associated with infection or inflammation, but also to identify therapeutic targets for immune diseases.

Cannabinoids can modulate immune reactions in the periphery but also in the brain, influence T cell subset balance and cytokine expression and play a role in the balance between neuroinflammation and neurodegeneration. Immune cells can synthesize endocannabinoids and also be influenced by cannabinoid analogues.

Cannabinoid receptors show different expression on immune cells depending on activation status and stimuli. The complexity of relation between cannabinoid ligands of various classes and cannabinoid receptors brought the need to refine the simple conceptual frame of agonist-antagonists and offered potential implications for understanding interactions in pathological conditions.

The immune influence of cannabinoid ligands is not fully elucidated. However, aspects of their immunomodulatory effects provide the basis for a context-dependent targeted therapeutic approach, thus leading to the possibility for the use of cannabinoids in the treatment of inflammatory disease.”

The Cannabinergic System as a Target for Anti-inflammatory Therapies

“Cell-based experiments or in vivo animal testing suggest that regulation of the endocannabinoid circuitry can impact almost every major function associated with the immune system. These studies were assisted by the development of numerous novel molecules that exert their biological effects through the endocannabinoid system. Several of these compounds were tested for their effects on immune function, and the results suggest therapeutic opportunities for a variety of inflammatory diseases such as multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, allergic asthma, and autoimmune diabetes through modulation of the endocannabinoid system.”

http://www.ingentaconnect.com/content/ben/ctmc/2006/00000006/00000013/art00008