Active Component Of Marijuana Has Anti-Cancer Effects, Study Suggests

“Guillermo Velasco and colleagues, at Complutense University, Spain, have provided evidence that suggests that cannabinoids such as the main active component of marijuana (THC) have anticancer effects on human brain cancer cells.

In the study, THC was found to induce the death of various human brain cancer cell lines and primary cultured human brain cancer cells by a process known as autophagy.

Consistent with the in vitro data, administration of THC to mice with human tumors decreased tumor growth and induced the tumor cells to undergo autophagy. As analysis of tumors from two patients with recurrent glioblastoma multiforme (a highly aggressive brain tumor) receiving intracranial THC administration showed signs of autophagy, the authors suggest that cannabinoid administration may provide a new approach to targeting human cancers.”  http://www.sciencedaily.com/releases/2009/04/090401181217.htm

“Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells” https://www.jci.org/articles/view/37948

 

Cannabidiol Inhibits Growth and Induces Programmed Cell Death in Kaposi Sarcoma–Associated Herpesvirus-Infected Endothelium

“Kaposi sarcoma is the most common neoplasm caused by Kaposi sarcoma–associated herpesvirus (KSHV). Current treatments for Kaposi sarcoma can inhibit tumor growth but are not able to eliminate KSHV from the host. When the host’s immune system weakens, KSHV begins to replicate again, and active tumor growth ensues. New therapeutic approaches are needed.

Cannabidiol (CBD), a plant-derived cannabinoid, exhibits promising antitumor effects without inducing psychoactive side effects. CBD is emerging as a novel therapeutic for various disorders, including cancer.

In this study, we investigated the effects of CBD both on the infection of endothelial cells (ECs) by KSHV and on the growth and apoptosis of KSHV-infected ECs, an in vitro model for the transformation of normal endothelium to Kaposi sarcoma….

Cannabidiol (CBD) was first isolated in 1940. It is a major component of the plant Cannabis sativa, which is also the source of Δ9-tetrahydrocannabinol (Δ9-THC). Due to its multiple biological activities, CBD has been identified as a potential clinical agent. Moreover, CBD affects these activities without the psychoactive side effects that typify Δ9-THC. Recent studies have documented the potential antitumorigenic properties of CBD in the treatment of various neoplasms, including breast cancer, lung cancer, bladder cancer, glioblastoma,and leukemia.CBD induces these effects through a variety of mechanisms and signaling pathways

CBD has been evaluated clinically for the treatment of various conditions, including anxiety, psychosis, and pain. In contrast to other members of the cannabinoid family, CBD has a strong safety profile and induces no psychotropic effects.Therefore, it has become an attractive agent in the search for new anticancer therapies.Our current study demonstrated that CBD preferentially enhanced apoptosis and inhibited the proliferation of KSHV-infected endothelial cells. This selective targeting of KSHV-induced neoplasia suggests that CBD may have a desirable therapeutic index when used to treat cancer. Moreover, a recent study demonstrated that CBD can be delivered effectively by nasal and transdermal routes, which may be particularly valuable for the treatment of Kaposi sarcoma oral or skin lesions.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527984/

Cannabinoids for Cancer Treatment: Progress and Promise

Cancer Research: 68 (2)

“Cannabinoid refers to a group of chemicals naturally found in the marijuana plant Cannabis sativa L. and includes compounds that are either structurally or pharmacologically similar to Δ(9)-tetrahydrocannabinol or those that bind to the cannabinoid receptors. Although anticancer effects of cannabinoids were shown as early as 1975 in Lewis lung carcinoma, renewed interest was generated little after the discovery of the cannabinoid system and cloning of the specific cannabinoid receptors.

Cannabinoids are a class of pharmacologic compounds that offer potential applications as antitumor drugs, based on the ability of some members of this class to limit inflammation, cell proliferation, and cell survival. In particular, emerging evidence suggests that agonists of cannabinoid receptors expressed by tumor cells may offer a novel strategy to treat cancer. Here, we review recent work that raises interest in the development and exploration of potent, nontoxic, and nonhabit forming cannabinoids for cancer therapy.”

Full Text: http://cancerres.aacrjournals.org/content/68/2/339.long

US Investigators Praise Cannabinoids As Chemo Treatment

“Cannabinoids inhibit cancer cell proliferation and should be clinically tested as chemotherapeutic agents, according to a review published in the January issue of the journal Cancer Research.

Investigators at the University of Wisconsin School of Medicine and Public Health reported that the administration of cannabinoids halts the spread of a wide range of cancers, including brain cancer, prostate cancer, breast cancer, lung cancer, skin cancer, pancreatic cancer, and lymphoma.

Researchers suggested that cannabinoids may offer significant advantages over standard chemotherapy treatments because the compounds are both non-toxic and can uniquely target malignant cells while ignoring healthy ones.

“Cannabinoids … offer potential applications as anti-tumor drugs, based on the ability of some members of this class to limit inflammation, cell proliferation, and cell survival,” authors concluded. “[T]here is overwhelming evidence to suggest that cannabinoids can be explored as chemotherapeutic agents for the treatment of cancer.””

Read more: http://norml.org/news/2008/01/31/us-investigators-praise-cannabinoids-as-chemo-treatment

Cannabinoids As Cancer Hope

NORML - Working to reform marijuana laws

by Paul Armentano
Senior Policy Analyst
NORML | NORML Foundation

““Cannabinoids possess … anticancer activity [and may] possibly represent a new class of anti-cancer drugs that retard cancer growth, inhibit angiogenesis (the formation of new blood vessels) and the metastatic spreading of cancer cells.” So concludes a comprehensive review published in the October 2005 issue of the scientific journal Mini-Reviews in Medicinal Chemistry.

Not familiar with the emerging body of research touting cannabis’ ability to stave the spread of certain types of cancers? You’re not alone.

For over 30 years, US politicians and bureaucrats have systematically turned a blind eye to scientific research indicating that marijuana may play a role in cancer prevention — a finding that was first documented in 1974. That year, a research team at the Medical College of Virginia (acting at the behest of the federal government) discovered that cannabis inhibited malignant tumor cell growth in culture and in mice. According to the study’s results, reported nationally in an Aug. 18, 1974, Washington Post newspaper feature, administration of marijuana’s primary cannabinoid THC, “slowed the growth of lung cancers, breast cancers and a virus-induced leukemia in laboratory mice, and prolonged their lives by as much as 36 percent.”

Despite these favorable preclinical findings, US government officials dismissed the study (which was eventually published in the Journal of the National Cancer Institute in 1975), and refused to fund any follow-up research until conducting a similar — though secret — clinical trial in the mid-1990s. That study, conducted by the US National Toxicology Program to the tune of $2 million concluded that mice and rats administered high doses of THC over long periods experienced greater protection against malignant tumors than untreated controls.

Rather than publicize their findings, government researchers once again shelved the results, which only came to light after a draft copy of its findings were leaked in 1997 to a medical journal, which in turn forwarded the story to the national media.

Nevertheless, in the decade since the completion of the National Toxicology trial, the U.S. government has yet to encourage or fund additional, follow up studies examining the cannabinoids’ potential to protect against the spread cancerous tumors.

Fortunately, scientists overseas have generously picked up where US researchers so abruptly left off. In 1998, a research team at Madrid’s Complutense University discovered that THC can selectively induce apoptosis (program cell death) in brain tumor cells without negatively impacting the surrounding healthy cells. Then in 2000, they reported in the journal Nature Medicine that injections of synthetic THC eradicated malignant gliomas (brain tumors) in one-third of treated rats, and prolonged life in another third by six weeks.

In 2003, researchers at the University of Milan in Naples, Italy, reported that non-psychoactive compounds in marijuana inhibited the growth of glioma cells in a dose dependent manner and selectively targeted and killed malignant cancer cells.

The following year, researchers reported in the journal of the American Association for Cancer Research that marijuana’s constituents inhibited the spread of brain cancer in human tumor biopsies. In a related development, a research team from the University of South Florida further noted that THC can also selectively inhibit the activation and replication of gamma herpes viruses. The viruses, which can lie dormant for years within white blood cells before becoming active and spreading to other cells, are thought to increase one’s chances of developing cancers such as Karposis Sarcoma, Burkitts lymphoma, and Hodgkins disease.

More recently, investigators published pre-clinical findings demonstrating that cannabinoids may play a role in inhibiting cell growth of colectoral cancer, skin carcinoma, breast cancer, and prostate cancer, among other conditions. When investigators compared the efficacy of natural cannabinoids to that of a synthetic agonist, THC proved far more beneficial – selectively decreasing the proliferation of malignant cells and inducing apoptosis more rapidly than its synthetic alternative while simultaneously leaving healthy cells unscathed.

Nevertheless, US politicians have been little swayed by these results, and remain steadfastly opposed to the notion of sponsoring – or even acknowledging – this growing body clinical research, preferring instead to promote the unfounded notion that cannabis use causes cancer. Until this bias changes, expect the bulk of research investigating the use of cannabinoids as anticancer agents to remain overseas and, regrettably, overlooked in the public discourse.”

http://norml.org/component/zoo/category/cannabinoids-as-cancer-hope

Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators.

Cover image

“Cannabinoids-endocannaboids are possible preventatives of common diseases including cancers. Cannabinoid receptors (CB(½), TRPV1) are central components of the system. Many disease-ameliorating effects of cannabinoids-endocannabinoids are receptor mediated, but many are not, indicating non-CBR signaling pathways.

Cannabinoids-endocannabinoids are anti-inflammatory, anti-proliferative, anti-invasive, anti-metastatic and pro-apoptotic in most cancers, in vitro and in vivo in animals.

They signal through p38, MAPK, JUN, PI3, AKT, ceramide, caspases, MMPs, PPARs, VEGF, NF-κB, p8, CHOP, TRB3 and pro-apoptotic oncogenes (p53,p21 waf1/cip1) to induce cell cycle arrest, autophagy, apoptosis and tumour inhibition. Paradoxically they are pro-proliferative and anti-apoptotic in some cancers. Differences in receptor expression and concentrations of cannabinoids in cancer and immune cells can elicit anti- or pro-cancer effects through different signal cascades (p38MAPK or PI3/AKT).

Similarities between effects of cannabinoids-endocannabinoids, omega-3 LCPUFA and CLAs/CLnAs as anti-inflammatory, antiangiogenic, anti-invasive anti-cancer agents indicate common signaling pathways.

Evidence in vivo and in vitro shows EPA and DHA can form endocannabinoids that: (i) are ligands for CB(½) receptors and possibly TRPV-1, (ii) have non-receptor mediated bioactivity, (iii) induce cell cycle arrest, (iii) increase autophagy and apoptosis, and (iv) augment chemotherapeutic actions in vitro. They can also form bioactive, eicosanoid-like products that appear to be non-CBR ligands but have effects on PPARs and NF-kB transcription factors. The use of cannabinoids in cancer treatment is currently limited to chemo- and radio-therapy-associated nausea and cancer-associated pain apart from one trial on brain tumours in patients. Further clinical studies are urgently required to determine the true potential of these intriguing, low toxicity compounds in cancer therapy. Particularly in view of their synergistic effects with chemotherapeutic agents similar to that observed for n-3 LCPUFA.”  https://www.ncbi.nlm.nih.gov/pubmed/23103355

http://www.sciencedirect.com/science/article/pii/S0163782712000537

Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain.

Image result for journal of pain and symptom management impact factor

“This study compared the efficacy of a tetrahydrocannabinol:cannabidiol (THC:CBD) extract, a nonopioid analgesic endocannabinoid system modulator, and a THC extract, with placebo, in relieving pain in patients with advanced cancer. This study shows that THC:CBD extract is efficacious for relief of pain in patients with advanced cancer pain not fully relieved by strong opioids.”  http://www.ncbi.nlm.nih.gov/pubmed/19896326

“In conclusion, THC:CBD extract, a nonopioid analgesic, endocannabinoid system modulator, has been shown to be a useful adjunctive treatment for relief of pain in patients with advanced cancer who experience inadequate analgesia despite chronic opioid therapy. The reductions in pain scores were neither because of a change in opioid background medications nor because of an increase in use of breakthrough medication. Therefore, we can conclude that the observed reduction in pain scores is attributable to the positive analgesic effects of THC:CBD extract.” http://www.jpsmjournal.com/article/S0885-3924(09)00787-8/fulltext

Cannabis spray found to help relieve cancer pain

“Cancer patients who used a cannabis mouthspray had their level of pain reduced by 30%, a study has shown.

The cannabis-based spray, like a mouth freshener, was used on 177 patients by researchers from Edinburgh University.

They found it reduced pain levels by 30% in a group of cancer patients, all in the Edinburgh area, who had not been helped by morphine or other medicines.

The spray was developed so that it did not affect the mental state of patients in the way that using cannabis would.

Site of pain

They said the spray worked by activating molecules in the body called cannabinoid receptors which can stop nerve signals being sent to the brain from the site of pain.

Professor Marie Fallon, of the Edinburgh Cancer Research Centre at Edinburgh University, said: “These early results are very promising and demonstrate that cannabis-based medicines may deliver effective treatment for people with severe pain.

“Prescription of these drugs can be very useful in combating debilitating pain, but it is important to understand the difference between their medical and recreational use.””

http://www.plymouthwired.co.uk/news.php/2777-Cannabis-spray-found-to-help-relieve-cancer-pain

From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

Image result for West Indian Med J

“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”

http://www.ncbi.nlm.nih.gov/pubmed/23155985

A new strategy to block tumor growth by inhibiting endocannabinoid inactivation.

Image result for faseb journal

“Endocannabinoid signaling has been shown to be enhanced in several cancer tissues and malignant cells, and studies in cell lines have shown that this up-regulation might serve the purpose of providing transformed cells with a further means to inhibit their proliferation. Here we investigated the effect of inhibitors of endocannabinoid degradation on the growth of rat thyroid tumor xenografts induced in athymic mice. VDM-11, a selective inhibitor of endocannabinoid cellular re-uptake, and arachidonoyl-serotonin (AA-5-HT), a selective blocker of endocannabinoid enzymatic hydrolysis, both inhibited the growth in vivo of tumor xenografts induced by the subcutaneous injection of rat thyroid transformed (KiMol) cells. This effect was accompanied by significantly enhanced endocannabinoid concentrations in the tumors excised at the end of the in vivo experiments. Endocannabinoids, as well as VDM-11 and AA-5-HT, inhibited the growth in vitro of the transformed rat thyroid cells used to induce the tumors in vivo, and their effect was reversed at least in part by the cannabinoid CB1 receptor antagonist SR141716A. This compound, however, when administered alone, did not enhance, but instead slightly inhibited, the growth of rat thyroid transformed cells both in vitro and in tumor xenografts induced in vivo. These findings indicate that endocannabinoids tonically control tumor growth in vivo by both CB1-mediated and non-CB1-mediated mechanisms and that, irrespective of the molecular mechanism of their anti-proliferative action, inhibitors of their inactivation might be used for the development of novel anti-cancer drugs.”  http://www.ncbi.nlm.nih.gov/pubmed/15289448

“A new strategy to block tumor growth by inhibiting endocannabinoid inactivation”  http://www.fasebj.org/content/early/2004/10/02/fj.04-1754fje.long