Medical Cannabis Use in Glioma Patients Treated at a Comprehensive Cancer Center in Florida.

View details for Journal of Palliative Medicine cover image

“Glioma is a devastating primary tumor of the central nervous system with difficult-to-manage symptoms.

Cannabis products have been postulated to potentially benefit glioma patients. Recent state legalization allowed investigators an opportunity to study glioma patients’ adoption of medical marijuana (MM).

Objective: Our goals were to: (1) determine the prevalence of marijuana use, both through physician recommendation and self-medication, and (2) evaluate its perceived risks and benefits in glioma patients.

Results: A total of 73 patients were surveyed. The majority of participants were aware that MM was legal in the state, and most reported learning of this through the media. Over 70% of participants reported having considered using MM, and a third reported using marijuana products after their diagnosis. Most received recommendations from friends/family rather than a medical provider, and only half of the users had obtained a physician’s recommendation. Users generally reported benefits.

Conclusions: With the increasing national conversation that accompanies legalization, glioma patients are pursuing marijuana for the treatment for their symptoms. More research and education is needed to bring health care providers into the conversation.”

“A glioma is a primary brain tumor that originates from the supportive cells of the brain, called glial cells.” http://neurosurgery.ucla.edu/body.cfm?id=159
“Remarkably, cannabinoids kill glioma cells selectively and can protect non-transformed glial cells from death.” https://www.ncbi.nlm.nih.gov/pubmed/15275820
“A meta-analysis of 34 in vitro and in vivo studies of cannabinoids in glioma reported that all but one study confirmed that cannabinoids selectively kill tumor cells.”  https://www.cancer.gov/about-cancer/treatment/cam/hp/cannabis-pdq#section/_7
“Since cannabinoids kill tumor cells without toxicity on their non transformed counterparts, they can represent a class of new potential anticancer drugs.”                                        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835116/ 

Inhibition of ATM kinase upregulates levels of cell death induced by cannabidiol and γ-irradiation in human glioblastoma cells.

Related image“Despite advances in glioblastoma (GBM) therapy, prognosis of the disease remains poor with a low survival rate.

Cannabidiol (CBD) can induce cell death and enhance radiosensitivity of GBM but not normal astrocytes.

Inhibition of ATM kinase is an alternative mechanism for radiosensitization of cancer cells.

In this study, we increased the cytotoxic effects of the combination of CBD and γ-irradiation in GBM cells through additional inhibition of ATM kinase with KU60019, a small molecule inhibitor of ATM kinase.

We observed in GBM cells treated by CBD, γ-irradiation and KU60019 high levels of apoptosis together with strong upregulation of the percentage of G2/M-arrested cells, blockade of cell proliferation and a massive production of pro-inflammatory cytokines.

Overall, these changes caused both apoptotic and non-apoptotic inflammation-linked cell death. Furthermore, via JNK-AP1 activation in concert with active NF-κB, CBD upregulated gene and protein expression of DR5/TRAIL-R2 and sensitize GBM cells to TRAIL-induced apoptosis. In contrast, CBD notably decreased in GBM surface levels of PD-L1, a critical immune checkpoint agent for T-lymphocytes. We also used in the present study TS543 human proneural glioma cells that were grown as spheroid culture. TS543 neurospheres exhibited dramatic sensitivity to CBD-mediated killing that was additionally increased in combination with γ-irradiation and KU60019.

In conclusion, treatment of human GBM by the triple combination (CBD, γ-irradiation and KU60019) could significantly increase cell death levels in vitro and potentially improve the therapeutic ratio of GBM.”

https://www.ncbi.nlm.nih.gov/pubmed/30783513

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=26582&path[]=82682

WIN55,212-2 induces caspase-independent apoptosis on human glioblastoma cells by regulating HSP70, p53 and Cathepsin D.

Toxicology in Vitro

“Despite the standard approaches to treat the highly aggressive and invasive glioblastoma (GBM), it remains incurable.

In this sense, cannabinoids highlight as a promising tool, because this tumor overexpresses CB1 and/or CB2 receptors and being, therefore, can be susceptible to cannabinoids treatment.

Thus, this work investigated the action of the cannabinoid agonist WIN55-212-2 on GBM cell lines and non-malignant cell lines, in vitro and in vivo. WIN was selectively cytotoxic to GBM cells. These presented blebbing and nuclear alterations in addition to cell shrinkage and chromatin condensation. WIN also significantly inhibited the migration of GAMG and U251 cells.

Finally, the data also showed that the antitumor effects of WIN are exerted, at least to some extent, by the expression of p53 and increased cathepsin D in addition to the decreased expression of HSP70.This data can indicate caspase-independent cell death mechanism. In addition, WIN decreased tumoral perimeter as well as caused a reduction the blood vessels in this area, without causing lysis, hemorrhage or blood clotting.

So, the findings herein presented reinforce the usefulness of cannabinoids as a candidate for further evaluation in treatment in glioblastoma treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/30776504

https://www.sciencedirect.com/science/article/pii/S0887233318307537?via%3Dihub

On the influence of cannabinoids on cell morphology and motility of glioblastoma cells.

 Image result for plos one

“The mechanisms behind the anti-tumoral effects of cannabinoids by impacting the migratory activity of tumor cells are only partially understood. Previous studies demonstrated that cannabinoids altered the organization of the actin cytoskeleton in various cell types.

As actin is one of the main contributors to cell motility and is postulated to be linked to tumor invasion, we tested the following hypothesizes: 1) Can cannabinoids alter cell motility in a cannabinoid receptor dependent manner? 2) Are these alterations associated with reorganizations in the actin cytoskeleton? 3) If so, what are the underlying molecular mechanisms?

Three different glioblastoma cell lines were treated with specific cannabinoid receptor 1 and 2 agonists and antagonists. Afterwards, we measured changes in cell motility using live cell imaging and alterations of the actin structure in fixed cells. Additionally, the protein amount of phosphorylated p44/42 mitogen-activated protein kinase (MAPK), focal adhesion kinases (FAK) and phosphorylated FAK (pFAK) over time were measured.

Cannabinoids induced changes in cell motility, morphology and actin organization in a receptor and cell line dependent manner. No significant changes were observed in the analyzed signaling molecules. Cannabinoids can principally induce changes in the actin cytoskeleton and motility of glioblastoma cell lines. Additionally, single cell motility of glioblastoma is independent of their morphology. Furthermore, the observed effects seem to be independent of p44/42 MAPK and pFAK pathways.”

https://www.ncbi.nlm.nih.gov/pubmed/30753211

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212037

Case Report: Clinical Outcome and Image Response of Two Patients With Secondary High-Grade Glioma Treated With Chemoradiation, PCV, and Cannabidiol.

Image result for frontiers in oncology

“We describe two patients with a confirmed diagnosis of high-grade gliomas (grades III/IV), both presenting with O6-methylguanine-DNA methyltransferase (MGMT) methylated and isocitrate dehydrogenase (IDH-1) mutated who, after subtotal resection, were submitted to chemoradiation and followed by PCV, a multiple drug regimen (procarbazine, lomustine, and vincristine) associated with cannabidiol (CBD).

Both patients presented with satisfactory clinical and imaging responses at periodic evaluations. Immediately after chemoradiation therapy, one of the patients presented with an exacerbated and precocious pseudoprogression (PSD) assessed by magnetic resonance imaging (MRI), which was resolved in a short period. The other patient presented with a marked remission of altered areas compared with the post-operative scans as assessed by MRI.

Such aspects are not commonly observed in patients only treated with conventional modalities. This observation might highlight the potential effect of CBD to increase PSD or improve chemoradiation responses that impact survival. Further investigation with more patients and critical molecular analyses should be performed.”

https://www.ncbi.nlm.nih.gov/pubmed/30713832

“These observations are of particular interest because the pharmacology of cannabinoids appears to be distinct from existing oncology medications and may offer a unique and possibly synergistic option for future glioma treatment.”

https://www.frontiersin.org/articles/10.3389/fonc.2018.00643/full

Synthetic Cannabinoids Influence the Invasion of Glioblastoma Cell Lines in a Cell- and Receptor-Dependent Manner.

cancers-logo

“The current treatment of glioblastoma is not sufficient, since they are heterogeneous and often resistant to chemotherapy.

Earlier studies demonstrated effects of specific cannabinoid receptor (CB) agonists on the invasiveness of glioblastoma cell lines, but the exact mechanism remained unclear.

Three human glioblastoma cell lines were treated with synthetic CB ligands. The effect of cannabinoids on microRNAs (miRs), Akt, and on the expression of proliferation and apoptosis markers were analyzed.

Furthermore, in a model of organotypic hippocampal slice cultures cannabinoid mediated changes in the invasiveness were assessed. MicroRNAs and the activation of Akt which are related to cell migration, apoptosis, and proliferation were evaluated and found not to be associated with changes in the invasiveness after treatment with CB ligands.

Also proliferation and/or apoptosis were not altered after treatment. The effects of cannabinoids on invasiveness could be blocked by the application of receptor antagonists and are likely mediated via CB₁/CB₂.

In conclusion, our results suggest that cannabinoids can influence glioblastoma cell invasion in a receptor and cell type specific manner that is independent of proliferation and apoptosis. Thus, cannabinoids can potentially be used in the future as an addition to current therapy.”

Cannabidiol Affects Extracellular Vesicle Release, miR21 and miR126, and Reduces Prohibitin Protein in Glioblastoma Multiforme Cells.

 Translational Oncology“Glioblastoma multiforme (GBM) is the most common and aggressive form of primary malignant brain tumor in adults, with poor prognosis. Extracellular vesicles (EVs) are key-mediators for cellular communication through transfer of proteins and genetic material. Cancers, such as GBM, use EV release for drug-efflux, pro-oncogenic signaling, invasion and immunosuppression; thus the modulation of EV release and cargo is of considerable clinical relevance. As EV-inhibitors have been shown to increase sensitivity of cancer cells to chemotherapy, and we recently showed that cannabidiol (CBD) is such an EV-modulator, we investigated whether CBD affects EV profile in GBM cells in the presence and absence of temozolomide (TMZ). Compared to controls, CBD-treated cells released EVs containing lower levels of pro-oncogenic miR21 and increased levels of anti-oncogenic miR126; these effects were greater than with TMZ alone. In addition, prohibitin (PHB), a multifunctional protein with mitochondrial protective properties and chemoresistant functions, was reduced in GBM cells following 1 h CBD treatment. This data suggests that CBD may, via modulation of EVs and PHB, act as an adjunct to enhance treatment efficacy in GBM, supporting evidence for efficacy of cannabinoids in GBM.”

https://www.ncbi.nlm.nih.gov/pubmed/30597288

Cannabidiol (CBD) is a phytocannabinoid derived from Cannabis sativa and known for its anti-neoplastic and chemo-preventive activities. Known anti-cancerous effects of cannabinoids include inhibition of tumor proliferation, angiogenesis and induction of tumor cell death, while in GBM, additional effects on inhibition of invasiveness and stem-cell like properties have been observed. CBD has also been shown to selectively inhibit GBM proliferation and to induce death of cultured human GBM cells, as well as being effective against other cancers.  We have recently shown that CBD is a novel modulator of EV release in several cancer cell lines and we and other groups have shown that EV-modulators, including CBD, can significantly increase sensitivity of various cancer cells to chemotherapy. This supports emerging evidence that CBD has anti-cancer effects and indicates that CBD can be used to lower anti-chemotherapeutic responses to TMZ as well as modifying EV cargo to an anti-oncogenic signature in GBM.”

https://www.sciencedirect.com/science/article/pii/S1936523318305990?via%3Dihub

Lipid nanocapsules decorated and loaded with cannabidiol as targeted prolonged release carriers for glioma therapy: in vitro screening of critical parameters.

 European Journal of Pharmaceutics and Biopharmaceutics“The therapeutic potential of cannabinoids has been truly constrained heretofore due to their strong psychoactive effects and their high lipophilicity. In this context, precisely due to the lack of psychoactive properties, cannabidiol (CBD), the second major component of Cannabis sativa, arises as the phytocannabinoid with the most auspicious therapeutic potential.

Hence, the incorporation of CBD in lipid nanocapsules (LNCs) will contribute to overcome the dosing problems associated with cannabinoids.

Herein, we have prepared LNCs decorated and loaded with CBD for glioma therapy and screened in vitro their critical parameters. On the one hand, we have encapsulated CBD into the oily core of LNCs to test their in vitro efficacy as extended-release carriers against the human glioblastoma cell line U373MG. The in vitro antitumor effect was highly dependent on the size of LNCs due to its pivotal role in the extent of CBD release.

Effectively, a comparison between two differently-sized LNCs (namely, 20-nm and 50-nm sized carriers) showed that the smaller LNCs reduced by 3.0-fold the IC50 value of their 50-nm sized counterparts. On the other hand, to explore the potential of this phytocannabinoid to target any of the cannabinoid receptors overexpressed in glioma cells, we decorated the LNCs with CBD. This functionalization strategy enhanced the in vitro glioma targeting by 3.4-fold in comparison with their equally-sized undecorated counterparts.

Lastly, the combination of CBD-loading with CBD-functionalization further reduced the IC50 values. Hence, the potential of these two strategies of CBD incorporation into LNCs deserves subsequent in vivo evaluation.”

https://www.ncbi.nlm.nih.gov/pubmed/30472144

https://www.sciencedirect.com/science/article/abs/pii/S0939641118311366?via%3Dihub

Report of Objective Clinical Responses of Cancer Patients to Pharmaceutical-grade Synthetic Cannabidiol.

“Cannabinoids are widely used in the management of pain, nausea and cachexia in cancer patients. However, there has been no objective clinical evidence of any anticancer activity yet.

The aim of this study was to assess the effects of pharmaceutical-grade synthetic cannabidiol on a range of cancer patients.

RESULTS:

Clinical responses were seen in 92% of the 119 cases with solid tumours including a reduction in circulating tumour cells in many cases and in other cases, a reduction in tumour size, as shown by repeat scans. No side-effects of any kind were observed when using pharmaceutical grade synthetic cannabidiol.

CONCLUSION:

Pharmaceutical-grade synthetic cannabidiol is a candidate for treating breast cancer and glioma patients.”

https://www.ncbi.nlm.nih.gov/pubmed/30275207

http://ar.iiarjournals.org/content/38/10/5831

Targeting Glioma Initiating Cells With A Combined Therapy Of Cannabinoids And Temozolomide.

Biochemical Pharmacology

“Glioblastoma multiforme (GBM) is the most frequent and aggressive type of brain tumor due, at least in part, to its poor response to current anticancer treatments. These features could be explained, at least partially, by the presence within the tumor mass of a small population of cells termed Glioma Initiating Cells (GICs) that has been proposed to be responsible for the relapses occurring in this disease. Thus, the development of novel therapeutic approaches (and specifically those targeting the population of GICs) is urgently needed to improve the survival of the patients suffering this devastating disease.

Previous observations by our group and others have shown that Δ9-Tetrahydrocannabinol (THC, the main active ingredient of marijuana) and other cannabinoids including cannabidiol (CBD) exert antitumoral actions in several animal models of cancer, including gliomas.

We also found that the administration of THC (or of THC + CBD at a 1:1 ratio) in combination with temozolomide, the benchmark agent for the treatment of GBM, synergistically reduces the growth of glioma xenografts.

In this work we investigated the effect of the combination of TMZ and THC:CBD mixtures containing different ratios of the two cannabinoids in preclinical glioma models, including those derived from GICs.

Our findings show that TMZ + THC:CBD combinations containing a higher proportion of CDB (but not TMZ + CBD alone) produce a similar antitumoral effect as the administration of TMZ together with THC and CBD at a 1:1 ratio in xenografts generated with glioma cell lines. In addition, we also found that the administration of TMZ + THC:CBD at a 1:1 ratio reduced the growth of orthotopic xenografts generated with GICs derived from GBM patients and enhanced the survival of the animals bearing these intracranial xenografts.

Remarkably, the antitumoral effect observed in GICs-derived xenografts was stronger when TMZ was administered together with cannabinoid combinations containing a higher proportion of CBD. These findings support the notion that the administration of TMZ together with THC:CBD combinations – and specifically those containing a higher proportion of CBD – may be therapeutically explored to target the population of GICs in GBM.”