Cannabis Therapeutics and the Future of Neurology.

Image result for frontiers in integrative neuroscience

“Neurological therapeutics have been hampered by its inability to advance beyond symptomatic treatment of neurodegenerative disorders into the realm of actual palliation, arrest or reversal of the attendant pathological processes.

While cannabis-based medicines have demonstrated safety, efficacy and consistency sufficient for regulatory approval in spasticity in multiple sclerosis (MS), and in Dravet and Lennox-Gastaut Syndromes (LGS), many therapeutic challenges remain.

This review will examine the intriguing promise that recent discoveries regarding cannabis-based medicines offer to neurological therapeutics by incorporating the neutral phytocannabinoids tetrahydrocannabinol (THC), cannabidiol (CBD), their acidic precursors, tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA), and cannabis terpenoids in the putative treatment of five syndromes, currently labeled recalcitrant to therapeutic success, and wherein improved pharmacological intervention is required: intractable epilepsy, brain tumors, Parkinson disease (PD), Alzheimer disease (AD) and traumatic brain injury (TBI)/chronic traumatic encephalopathy (CTE).

Current basic science and clinical investigations support the safety and efficacy of such interventions in treatment of these currently intractable conditions, that in some cases share pathological processes, and the plausibility of interventions that harness endocannabinoid mechanisms, whether mediated via direct activity on CB1 and CB2 (tetrahydrocannabinol, THC, caryophyllene), peroxisome proliferator-activated receptor-gamma (PPARγ; THCA), 5-HT1A (CBD, CBDA) or even nutritional approaches utilizing prebiotics and probiotics.

The inherent polypharmaceutical properties of cannabis botanicals offer distinct advantages over the current single-target pharmaceutical model and portend to revolutionize neurological treatment into a new reality of effective interventional and even preventative treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/30405366

https://www.frontiersin.org/articles/10.3389/fnint.2018.00051/full

Neural stem cell lineage-specific cannabinoid type-1 receptor regulates neurogenesis and plasticity in the adult mouse hippocampus.

Cerebral Cortex

“Neural stem cells (NSCs) in the adult mouse hippocampus occur in a specific neurogenic niche, where a multitude of extracellular signaling molecules converges to regulate NSC proliferation as well as fate and functional integration. However, the underlying mechanisms how NSCs react to extrinsic signals and convert them to intracellular responses still remains elusive.

NSCs contain a functional endocannabinoid system, including the cannabinoid type-1 receptor (CB1).

To decipher whether CB1 regulates adult neurogenesis directly or indirectly in vivo, we performed NSC-specific conditional inactivation of CB1 by using triple-transgenic mice.

These results demonstrate that CB1 expressed in NSCs and their progeny controls neurogenesis in adult mice to regulate the NSC stem cell pool, dendritic morphology, activity-dependent plasticity, and behavior.”

https://www.ncbi.nlm.nih.gov/pubmed/30307491

https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhy258/5126794

Understanding the endocannabinoid system as a modulator of the trigeminal pain response to concussion.

“Post-traumatic headache is the most common symptom of postconcussion syndrome and becomes a chronic neurological disorder in a substantial proportion of patients.

This review provides a brief overview of the epidemiology of postconcussion headache, research models used to study this disorder, as well as the proposed mechanisms.

An objective of this review is to enhance the understanding of how the endogenous cannabinoid system is essential for maintaining the balance of the CNS and regulating inflammation after injury, and in turn making the endocannabinoid system a potential modulator of the trigeminal response to concussion.

The review describes the role of endocannabinoid modulation of pain and the potential for use of phytocannabinoids to treat pain, migraine and concussion.”

https://www.ncbi.nlm.nih.gov/pubmed/30202590

Review of the neurological benefits of phytocannabinoids.

Logo of sni

“Numerous physical, psychological, and emotional benefits have been attributed to marijuana since its first reported use in 2,600 BC in a Chinese pharmacopoeia. The phytocannabinoids, cannabidiol (CBD), and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied extracts from cannabis sativa subspecies hemp and marijuana. CBD and Δ9-THC interact uniquely with the endocannabinoid system (ECS). Through direct and indirect actions, intrinsic endocannabinoids and plant-based phytocannabinoids modulate and influence a variety of physiological systems influenced by the ECS.

METHODS:

In 1980, Cunha et al. reported anticonvulsant benefits in 7/8 subjects with medically uncontrolled epilepsy using marijuana extracts in a phase I clinical trial. Since then neurological applications have been the major focus of renewed research using medical marijuana and phytocannabinoid extracts.

RESULTS:

Recent neurological uses include adjunctive treatment for malignant brain tumors, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, neuropathic pain, and the childhood seizure disorders Lennox-Gastaut and Dravet syndromes. In addition, psychiatric and mood disorders, such as schizophrenia, anxiety, depression, addiction, postconcussion syndrome, and posttraumatic stress disorders are being studied using phytocannabinoids.

CONCLUSIONS:

In this review we will provide animal and human research data on the current clinical neurological uses for CBD individually and in combination with Δ9-THC. We will emphasize the neuroprotective, antiinflammatory, and immunomodulatory benefits of phytocannabinoids and their applications in various clinical syndromes.”

https://www.ncbi.nlm.nih.gov/pubmed/29770251

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938896/

Chronic High Doses of Cannabinoids Promote Hippocampal Neurogenesis

Fake Banner

“Hippocampal neurogenesis is suppressed following chronic administration of the major drugs of abuse (including opiates, alcohol, nicotine, and cocaine). However, CB1-knockout mice display significantly decreased hippocampal neurogenesis, suggesting that CB1 receptors activated by endogenous, plant-derived, or synthetic cannabinoids may promote hippocampal neurogenesis.

Cannabinoids can regulate the proliferation of hippocampal NS/PCs by acting on CB1 receptors. They found that both the synthetic cannabinoid HU210 and the endocannabinoid anandamide profoundly promote embryonic hippocampal NS/PC proliferation. Chronic, but not acute, HU210 significantly increases the number of newborn hippocampal neurons in adult rats by promoting NS/PC proliferation.

A significant increase was observed in the hipoppocampal newborn neurons of mice following twice-daily HU210 injection for 10 days.

This suggests that cannabinoids are the only illicit drug that can promote adult hippocampal neurogenesis following chronic  administration.”

Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects.” https://www.jci.org/articles/view/25509

http://www.science20.com/science_why_not/blog/chronic_high_doses_cannabinoids_promote_hippocampal_neurogenesis

Role for neuronal nitric-oxide synthase in cannabinoid-induced neurogenesis.

Role for neuronal nitric-oxide synthase in cannabinoid-induced neurogenesis.“Cannabinoids, acting through the CB1 cannabinoid receptor (CB1R), protect the brain against ischemia and related forms of injury.

This may involve inhibiting the neurotoxicity of endogenous excitatory amino acids and downstream effectors, such as nitric oxide (NO).

Cannabinoids also stimulate neurogenesis in the adult brain through activation of CB1R.

Because NO has been implicated in neurogenesis, we investigated whether cannabinoid-induced neurogenesis, like cannabinoid neuroprotection, might be mediated through alterations in NO production.” https://aggregator.leafscience.org/role-for-neuronal-nitric-oxide-synthase-in-cannabinoid-induced-neurogenesis/

“Nitric oxide negatively regulates mammalian adult neurogenesis.”  http://www.pnas.org/content/100/16/9566.long

“Thus, cannabinoids appear to stimulate adult neurogenesis by opposing the antineurogenic effect of NO.” http://jpet.aspetjournals.org/content/jpet/319/1/150.full.pdf

Endocannabinoid system and cannabinoids in neurogenesis – new opportunities for neurological treatment? Reports from experimental studies.

“Neurogenesis is one of the most important phenomenona affecting human life. This process consists of proliferation, migration and differentiation of neuroblasts and synaptic integrations of newborn neurons.
Proliferation of new cells continues into old age, also in humans, although the most extensive process of cell formation occurs during the prenatal period. It is possible to distinguish two regions in the brain responsible for neurogenesis: the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ). Hippocampal neurogenesis is very sensitive to various physiological and pathological stimuli.
The functional integration of the newly-born dentate granule cells into hippocampal circuitry, and their ability to mediate long-term potentiation in DG, has led to the hypothesis that neurogenesis in the adult brain may play a key role in learning and memory function, as well as cognitive dysfunction in some diseases.
Brain disorders, such as neurodegenerative diseases or traumatic brain injuries, significantly affect migration, proliferation and differentiation of neural cells. In searching for the best neurological drugs protecting neuronal cells, stimulating neurogenesis, while also developing no side-effects, endocannabinoids proved to be a strong group of substances having many beneficial properties.
Therefore, the latest data is reviewed of the various experimental studies concerning the analysis of the most commonly studied cannabinoids and their impact on neurogenesis.”

WWL70 protects against chronic constriction injury-induced neuropathic pain in mice by cannabinoid receptor-independent mechanisms.

Image result for JNI journal of neuroinflammation

“Targeting the endocannabinoid system has emerged as an effective strategy for the treatment of inflammatory and neurological diseases.

Unlike the inhibition of the principal 2-arachidonyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase (MAGL), which leads to 2-AG overload and cannabinoid receptor desensitization, selective inhibition of the minor 2-AG hydrolytic enzyme alpha, beta-hydrolase domain 6 (ABHD6) can provide therapeutic benefits without producing cannabimimetic side effects. We have shown that inhibition of ABHD6 significantly reduces neuroinflammation and exerts neuroprotection in animal models of traumatic brain injury and multiple sclerosis. However, the role of ABHD6 inhibition on neuropathic pain has not been explored.

CONCLUSIONS:

This study reveals a novel mechanism for the antinociceptive effect of the 2-AG catabolic enzyme ABHD6 inhibitor WWL70. Understanding the interaction between endocannabinoid and eicosanoid pathways might provide a new avenue for the treatment of inflammatory and neuropathic pain.”

Role of the endogenous cannabinoid receptor 1 in brain injury induced by chronic intermittent hypoxia in rats.

Publication Cover

“This study investigated the effect of rimonabant, a cannabinoid receptor type 1 (CB1) antagonist, on calcium/calmodulin dependent protein kinase II (CaMKII) and CB1 in chronic intermittent hypoxia (CIH).

Rimonabant had a protective effect against CIH.” https://www.ncbi.nlm.nih.gov/pubmed/29264962

http://www.tandfonline.com/doi/abs/10.1080/00207454.2017.1420069

 

Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells.

Biochemistry (Moscow)

“Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/29223163