Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis

cancers-logo“In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.”

https://pubmed.ncbi.nlm.nih.gov/32708138/

https://www.mdpi.com/2072-6694/12/7/1985

Inhibitor of Differentiation 1 (Id1) in Cancer and Cancer Therapy.

International Journal of Medical Sciences“The inhibitor of DNA binding (Id) proteins are regulators of cell cycle and cell differentiation. Of all Id family proteins, Id1 is mostly linked to tumorigenesis, cellular senescence as well as cell proliferation and survival.

Overall, Id1 represent a promising target of anti-tumor therapeutics based on its potent promotion effect to cancer. Numerous drugs were found exerting their anti-tumor function through Id1-related signaling pathways, such as fucoidan, berberine, tetramethylpyrazine, crizotinib, cannabidiol and vinblastine.”

https://www.ncbi.nlm.nih.gov/pubmed/32410828

“Id1 is a promising target of anti-tumor treatment as many compounds exert anti-tumor properties by mediating Id1-related pathways.”

https://www.medsci.org/v17p0995.htm

“Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. CBD represents the first nontoxic exogenous agent that can significantly decrease Id-1 expression in metastatic breast cancer cells leading to the down-regulation of tumor aggressiveness. Moreover, reducing Id-1 expression with cannabinoids could also provide a therapeutic strategy for the treatment of additional aggressive cancers because Id-1 expression was found to be up-regulated during the progression of almost all types of solid tumors investigated.”

https://mct.aacrjournals.org/content/6/11/2921

The effects of cannabinoids in exemestane-resistant breast cancer cells: PS181.

“Exemestane is one of the aromatase inhibitors (AI) used as first line treatment for estrogen-receptor positive breast cancer in post-menopausal women. Exemestane acts by inhibiting aromatase, the enzyme responsible for the conversion of androgens to estrogens and also by promoting apoptosis of breast cancer cells. Nevertheless, despite its therapeutic success, this AI, after prolonged treatment, can induce acquired resistance, which causes tumor relapse. Therefore, it is important to find new strategies to overcome resistance in order to improve breast cancer treatment.

Considering that the development of resistance is the main reason for endocrine treatment failure, our group decided to explore the ability of three cannabinoids, Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and anandamide (AEA), to reverse resistance to exemestane. The THC and CBD are phytocannabinoids derived from the plant Cannabis sativa (marijuana) whereas AEA is an endocannabinoid. For that, it was used LTEDaro cells, a long-term estrogen deprived ER+ breast cancer cell line that mimics resistance to exemestane. These cells were treated with exemestane in combination with two phytocannabinoids, CBD and THC, and the endocannabinoid AEA.

The presence of CB1 and CB2 in LTEDaro cells was confirmed by Western blot analysis and the effects of the combination of cannabinoids with exemestane were evaluated by MTT and LDH assays. Cell morphology was analyzed by Giemsa and Hoechst staining.

Results: Our results demonstrate that all the cannabinoids induce a decrease in viability of exemestane-resistant cells, in a dose- and time-dependent manner, without LDH release. These results indicate that the studied cannabinoids, mainly THC and AEA, revert the resistance to exemestane, probably by inducing apoptosis, as observed in Giemsa/Hoechst stain by the presence of typical morphological features of apoptosis.

Conclusion: This study highlights the efficacy of using cannabinoids as a potential adjuvant treatment to revert resistance to AIs.”

https://www.ncbi.nlm.nih.gov/pubmed/32258721

https://journals.lww.com/pbj/fulltext/2017/09000/The_effects_of_cannabinoids_in.118.aspx

Cannabinoids as anticancer therapeutic agents.

Cell Cycle Journal are Co-Sponsoring #ACCM15 – The Cell Division Lab “The recent announcement of marijuana legalization in Canada spiked many discussions about potential health benefits of Cannabis sativaCannabinoids are active chemical compounds produced by cannabis, and their numerous effects on the human body are primarily exerted through interactions with cannabinoid receptor types 1 (CB1) and 2 (CB2). Cannabinoids are broadly classified as endo-, phyto-, and synthetic cannabinoids. In this review, we will describe the activity of cannabinoids on the cellular level, comprehensively summarize the activity of all groups of cannabinoids on various cancers and propose several potential mechanisms of action of cannabinoids on cancer cells.”

https://www.ncbi.nlm.nih.gov/pubmed/32249682

“Endocannabinoids and phytocannabinoids can be used for cancer therapy. Cannabis extracts have stronger anti-tumor capacity than single cannabinoids. Combination of several cannabinoids may have more potent effect on cancer.”

https://www.tandfonline.com/doi/abs/10.1080/15384101.2020.1742952?journalCode=kccy20

CBD Reverts the Mesenchymal Invasive Phenotype of Breast Cancer Cells Induced by the Inflammatory Cytokine IL-1β.

ijms-logoCannabidiol (CBD) has been used to treat a variety of cancers and inflammatory conditions with controversial results. In previous work, we have shown that breast cancer MCF-7 cells, selected by their response to inflammatory IL-1β cytokine, acquire a malignant phenotype (6D cells) through an epithelial-mesenchymal transition (EMT).

We evaluated CBD as a potential inhibitor of this transition and inducer of reversion to a non-invasive phenotype. It decreased 6D cell viability, downregulating expression of receptor CB1. The CBD blocked migration and progression of the IL-1β-induced signaling pathway IL-1β/IL-1RI/β-catenin, the driver of EMT. 

Cannabidiol reestablished the epithelial organization lost by dispersion of the cells and re-localized E-cadherin and β-catenin at the adherens junctions. It also prevented β-catenin nuclear translocation and decreased over-expression of genes for ∆Np63α, BIRC3, and ID1 proteins, induced by IL-1β for acquisition of malignant features.

Cannabidiol inhibited the protein kinase B (AKT) activation, a crucial effector in the IL-1β/IL-1RI/β-catenin pathway, indicating that at this point there is crosstalk between IL-1β and CBD signaling which results in phenotype reversion.

Our 6D cell system allowed step-by-step analysis of the phenotype transition and better understanding of mechanisms by which CBD blocks and reverts the effects of inflammatory IL-1β in the EMT.”

https://www.ncbi.nlm.nih.gov/pubmed/32244518

https://www.mdpi.com/1422-0067/21/7/2429

Cannabidiolic acid dampens the expression of cyclooxygenase-2 in MDA-MB-231 breast cancer cells: Possible implication of the peroxisome proliferator-activated receptor β/δ abrogation.

The Journal of Toxicological Sciences “A growing body of experimental evidence strongly suggests that cannabidiolic acid (CBDA), a major component of the fiber-type cannabis plant, exerts a variety of biological activities.

We have reported that CBDA can abrogate cyclooxygenase-2 (COX-2) expression and its enzymatic activity. It is established that aberrant expression of COX-2 correlates with the degree of malignancy in breast cancer.

Although the reduction of COX-2 expression by CBDA offers an attractive medicinal application, the molecular mechanisms underlying these effects have not fully been established.

It has been reported that COX-2 expression is positively controlled by peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in some cancerous cells, although there is “no” modulatory element for PPARβ/δ on the COX-2 promoter. No previous studies have examined whether an interaction between PPARβ/δ-mediated signaling and COX-2 expression exists in MDA-MB-231 cells.

We confirmed, for the first time, that COX-2 expression is positively modulated by PPARβ/δ-mediated signaling in MDA-MB-231 cells. CBDA inhibits PPARβ/δ-mediated transcriptional activation stimulated by the PPARβ/δ-specific agonist, GW501516. Furthermore, the disappearance of cellular actin stress fibers, a hallmark of PPARβ/δ and COX-2 pathway activation, as evoked by the GW501516, was effectively reversed by CBDA. Activator protein-1 (AP-1)-driven transcriptional activity directly involved in the regulation of COX-2 was abrogated by the PPARβ/δ-specific inverse agonists (GSK0660/ST-247). Thus, it is implicated that there is positive interaction between PPARβ/δ and AP-1 in regulation of COX-2.

These data support the concept that CBDA is a functional down-regulator of COX-2 through the abrogation of PPARβ/δ-related signaling, at least in part, in MDA-MB-231 cells.”

https://www.ncbi.nlm.nih.gov/pubmed/32238697

https://www.jstage.jst.go.jp/article/jts/45/4/45_227/_article

n-3 Polyunsaturated Fatty Acid Amides: New Avenues in the Prevention and Treatment of Breast Cancer.

ijms-logo “Over the last decades a renewed interest in n-3 very long polyunsaturated fatty acids (PUFAs), derived mainly from fish oils in the human diet, has been observed because of their potential effects against cancer diseases, including breast carcinoma. These n-3 PUFAs mainly consist of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that, alone or in combination with anticancer agents, induce cell cycle arrest, autophagy, apoptosis, and tumor growth inhibition. A large number of molecular targets of n-3 PUFAs have been identified and multiple mechanisms appear to underlie their antineoplastic activities. Evidence exists that EPA and DHA also elicit anticancer effects by the conversion to their corresponding ethanolamide derivatives in cancer cells, by binding and activation of different receptors and distinct signaling pathways. Other conjugates with serotonin or dopamine have been found to exert anti-inflammatory activities in breast tumor microenvironment, indicating the importance of these compounds as modulators of tumor epithelial/stroma interplay. The objective of this review is to provide a general overview and an update of the current n-3 PUFA derivative research and to highlight intriguing aspects of the potential therapeutic benefits of these low-toxicity compounds in breast cancer treatment and care.”

https://www.ncbi.nlm.nih.gov/pubmed/32224850

https://www.mdpi.com/1422-0067/21/7/2279

“Anticancer effects of n-3 EPA and DHA and their endocannabinoid derivatives on breast cancer cell growth and invasion.”  https://www.ncbi.nlm.nih.gov/pubmed/31679810

Insight of Druggable Cannabinoids against Estrogen Receptor β in Breast Cancer.

 Publication Cover

“Breast cancer (BC) is the second most prevalent cancer worldwide.

Estrogen receptor beta (ERβ) is an essential protein of breast cells to suppress estrogen induced uncontrolled proliferation. Thus small molecules that can modulate and enhance ERβ expression would be an effective agent to suppress BC development.

Studies showed that cannabinoid (CB), specifically Delta-9-tetrahydrocannabinol (Del9THC), can increase the expression of ERβ and inhibits BC cell proliferation.

In this study, less psychoactive and structurally similar analogues of Del9THC were chosen as drug candidates and ERβ was targeted as a therapeutic receptor. Delta-8-tetrahydrocannabinol (Del8THC) and Delta-4-Isotetrahydrocannabinol (Del4isoTHC) were the drug candidates selected on the basis of literature reports, Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties, medicinal chemistry profile and physicochemical features.

Molecular docking simulations were carried out to determine ligand receptor interactions and binding affinity based on free binding energy. To get a better drug, the structural modification was done on Del8THC and generated a new CB analogue called Cannabinoid A.

Finally, molecular interaction analysis revealed that two CBs and one of their analogue interact with the active site residues of ERβ. Therefore, this study revealed a new way to discover novel drug(s) for BC patients.”

https://www.ncbi.nlm.nih.gov/pubmed/32116130

https://www.tandfonline.com/doi/abs/10.1080/07391102.2020.1737233?journalCode=tbsd20

Cannabinoids and Hormone Receptor-Positive Breast Cancer Treatment.

cancers-logo “Breast cancer (BC) is the most common cancer in women worldwide. Approximately 70-80% of BCs express estrogen receptors (ER), which predict the response to endocrine therapy (ET), and are therefore hormone receptor-positive (HR+).

Endogenous cannabinoids together with cannabinoid receptor 1 and 2 (CB1, CB2) constitute the basis of the endocannabinoid system.

Interactions of cannabinoids with hypothalamic-pituitary-gonadal axis hormones are well documented, and two studies found a positive correlation between peak plasma endogenous cannabinoid anandamide with peak plasma 17β-estradiol, luteinizing hormone and follicle-stimulating hormone levels at ovulation in healthy premenopausal women. Do cannabinoids have an effect on HR+ BC? In this paper we review known and possible interactions between cannabinoids and specific HR+ BC treatments.

In preclinical studies, CB1 and CB2 agonists (i.e., anandamide, THC) have been shown to inhibit the proliferation of ER positive BC cell lines.

There is less evidence for antitumor cannabinoid action in HR+ BC in animal models and there are no clinical trials exploring the effects of cannabinoids on HR+ BC treatment outcomes. Two studies have shown that tamoxifen and several other selective estrogen receptor modulators (SERM) can act as inverse agonists on CB1 and CB2, an interaction with possible clinical consequences. In addition, cannabinoid action could interact with other commonly used endocrine and targeted therapies used in the treatment of HR+ BC.”

https://www.ncbi.nlm.nih.gov/pubmed/32106399

https://www.mdpi.com/2072-6694/12/3/525

The Endocannabinoid System Alleviates Pain in a Murine Model of Cancer-Induced Bone Pain.

Journal of Pharmacology and Experimental Therapeutics: 372 (3)“Metastatic breast cancer is prevalent worldwide, and one of the most common sites of metastasis are long bones. Of patients with disease, the major symptom is pain, yet current medications fail to adequately result in analgesic efficacy and present major undesirable adverse effects.

In our study we investigate the potential of a novel monoacylglycerol lipase (MAGL) inhibitor, MJN110, in a murine model of cancer induced bone pain (CIBP). Literature has previously demonstrated that MAGL inhibitors function to increase the endogenous concentrations of 2-arachydonylglycerol, which then activate CB1 and CB2 receptors inhibiting inflammation and pain.

Together, these data support the application for MJN110 as a novel therapeutic for cancer induced bone pain.

SIGNIFICANCE STATEMENT: Current standard of care for metastatic breast cancer pain is opioid-based therapies with adjunctive chemotherapy, which have highly addictive and other deleterious side effects. The need for effective, non-opioid based therapies is essential and harnessing the endogenous cannabinoid system is proving to be a new target to treat various types of pain conditions. We present a novel drug targeting the endogenous cannabinoid system that is effective at reducing pain in a mouse model of metastatic breast cancer to bone.”

https://www.ncbi.nlm.nih.gov/pubmed/32054717

http://jpet.aspetjournals.org/content/early/2020/02/13/jpet.119.262337