Cannabinol inhibits cell growth and triggers cell cycle arrest and apoptosis in cancer cells

Biocatalysis and Agricultural Biotechnology

“Cancer is one of the most difficult diseases to treat and cure.”

“Cannabinol (CBN), one of the active ingredients from the cannabis plant, is the breakdown molecule of Δ9-tetrahydrocannabinol (Δ9-THC) which is the most abundant psychoactive cannabinoid.”

“Cannabinol (CBN) is a weak-psychoactive cannabinoid and has been shown to exert several bio-logical activities. At the same time, not much is known about the anti-cancer activities of CBN. In this report, we characterized the anti-tumor effects of CBN on the glioma A172, liver cancer HepG2 and breast cancer HCC1806 cell lines.

We found that CBN reduces the proliferation of the analyzed cancer cells and modulates the level of cannabinoid receptors, including GPR18, CB2 and GPR55. Furthermore, CBN inhibits the ERK1/2 pathway in A172 and HepG2 cells, while suppressing the AKT pathway in HCC1086 cells. Moreover, CBN may cause apoptosis through downregulation of p21 and p27 as well as a cell cycle arrest at G1 or S-phase via decreasing the CDK1, CDK2, and cyclin E1 levels.

Taken together, these results offer new insights into the anti-cancer properties of CBN.”

“CBN, one of the weak-psychoactive cannabinoids, have demonstrated various medicinal properties, including anti-inflammatory, antibacterial, analgesic and even anti-tumor.”

“In this study, we revealed the antitumor activity of CBN in three different tumor cell lines, glioma A172, liver cancer HepG2 and breast cancer HCC1806 cell lines. We report that cannabinol inhibits proliferation of several cancer cell lines by regulation of the signaling pathways involving ERK and AKT as well as by altering the expression of cannabinoid receptors. Moreover, we also found that CBN induces apoptosis and cell cycle arrest and partially uncovered underlying molecular mechanisms. Our findings provide novel information about the anti-cancer properties of CBN and justify further research to investigate the role of CBN as cancer therapeutic.”

https://www.sciencedirect.com/science/article/abs/pii/S1878818123000282

Cannabidiol Antiproliferative Effect in Triple-Negative Breast Cancer MDA-MB-231 Cells Is Modulated by Its Physical State and by IGF-1

pubmed logo

“Cannabidiol (CBD) is a non-psychoactive phytocannabinoid that has been discussed for its safety and efficacy in cancer treatments. For this reason, we have inquired into its use on triple-negative human breast cancer. Analyzing the biological effects of CBD on MDA-MB-231, we have demonstrated that both CBD dosage and serum concentrations in the culture medium influence its outcomes; furthermore, light scattering studies demonstrated that serum impacts the CBD aggregation state by acting as a surfactant agent. Pharmacological studies on CBD in combination with chemotherapeutic agents reveal that CBD possesses a protective action against the cytotoxic effect exerted by cisplatin on MDA-MB-231 grown in standard conditions. Furthermore, in a low serum condition (0.5%), starting from a threshold concentration (5 µM), CBD forms aggregates, exerts cytostatic antiproliferative outcomes, and promotes cell cycle arrest activating autophagy. At doses above the threshold, CBD exerts a highly cytotoxic effect inducing bubbling cell death. Finally, IGF-1 and EGF antagonize the antiproliferative effect of CBD protecting cells from harmful consequences of CBD aggregates. In conclusion, CBD effect is strongly associated with the physical state and concentration that reaches the treated cells, parameters not taken into account in most of the research papers.”

https://pubmed.ncbi.nlm.nih.gov/35806150/

“Among the various biological properties of phytocannabinoids, their ability to induce antiproliferative effects in different human cancer cells raises the scientific interest in their therapeutic potential in the field of oncology.”

https://www.mdpi.com/1422-0067/23/13/7145

Anti-proliferative effect of Cannabidiol in Prostate cancer cell PC3 is mediated by apoptotic cell death, NFκB activation, increased oxidative stress, and lower reduced glutathione status

pubmed logo

“Prostate cancer is the second most frequent cancer diagnosed in men in the world today. Almost all prostate cancers are adenocarcinomas and develop from gland cells. We used the PC3 prostate cancer cell line, which is well studied and derived from a bone metastasis of a grade IV prostatic adenocarcinoma.

Cannabidiol (CBD), a major non-psychoactive constituent of cannabis, is a cannabinoid with anti-tumor properties but its effects on prostate cancer cells are not studied in detail.

Here, we found cannabidiol decreased prostate cancer cell (PC3) viability up to 37.25% and induced apoptotic cell death in a time and dose-dependent manner. We found that CBD activated the caspases 3/7 pathways and increased DNA fragmentation. Furthermore, we observed an increase of pro-apoptotic genes Bax, an increased level of reactive oxygen species, lower reduced glutathione level, and altered mitochondrial potential in response to CBD treatment leading to lower cellular ATP.

Overall, our results suggest that CBD may be effective against prostate cancer cells.”

https://pubmed.ncbi.nlm.nih.gov/37796968/

“In summary, we have demonstrated CBD as a potential therapeutic molecule in the treatment of prostate cancer based on its properties of anti-proliferative effect on PC3 cancer cells by promoting intrinsic apoptotic pathway via mitochondrial and NFkB activation followed by intracellular ROS generation and reducing cellular redox status of glutathione.”

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286758

Cannabinoids in Breast Cancer: Differential Susceptibility According to Subtype

pubmed logo

“Although cannabinoids have been used for centuries for diverse pathological conditions, recently, their clinical interest and application have emerged due to their diverse pharmacological properties. Indeed, it is well established that cannabinoids exert important actions on multiple sclerosis, epilepsy and pain relief.

Regarding cancer, cannabinoids were first introduced to manage chemotherapy-related side effects, though several studies demonstrated that they could modulate the proliferation and death of different cancer cells, as well as angiogenesis, making them attractive agents for cancer treatment.

In relation to breast cancer, it has been suggested that estrogen receptor-negative (ER) cells are more sensitive to cannabinoids than estrogen receptor-positive (ER+) cells. In fact, most of the studies regarding their effects on breast tumors have been conducted on triple-negative breast cancer (TNBC). Nonetheless, the number of studies on human epidermal growth factor receptor 2-positive (HER2+) and ER+ breast tumors has been rising in recent years. However, besides the optimistic results obtained thus far, there is still a long way to go to fully understand the role of these molecules. This review intends to help clarify the clinical potential of cannabinoids for each breast cancer subtype.”

https://pubmed.ncbi.nlm.nih.gov/35011388/

“Cannabinoids have been used for centuries in several therapeutic applications. Regarding cancer, the use of cannabinoids has already been approved in several countries for the relief of chemotherapy-associated effects, but their clinical potential is greater than initially thought, and their clinical interest has been rising in recent years. Pre-clinical studies have demonstrated that cannabinoids exert important antitumor properties in the main breast cancer subtypes, particularly in TNBC, where different phytocannabinoids and synthetic cannabinoids have shown interesting therapeutic actions.”

“Thus, it is strongly believed that Cannabis, being an important natural source of many cannabinoids, may be a potential therapeutic option for the treatment or modulation of different physiological processes and, even, pathological conditions, such as cancer.”

https://www.mdpi.com/1420-3049/27/1/156

“Experimental evidence accumulated during the last decade supports that cannabinoids, the active components of Cannabis sativa and their derivatives, possess anticancer activity. Thus, these compounds exert anti-proliferative, pro-apoptotic, anti-migratory and anti-invasive actions in a wide spectrum of cancer cells in culture. Moreover, tumor growth, angiogenesis and metastasis are hampered by cannabinoids in xenograft-based and genetically-engineered mouse models of cancer. This review summarizes our current knowledge on the anti-tumor potential of cannabinoids in breast cancer, which suggests that cannabinoid-based medicines may be useful for the treatment of most breast tumor subtypes.”

https://www.sciencedirect.com/science/article/pii/S0305737212001399

Cannabis Use Patterns among Patients with Early-Stage Breast Cancer in a Large Multicenter Cohort from a State with Legalized Adult Non-Medical Cannabis

pubmed logo

“Purpose/objective(s): Cannabis use among patients with cancer is an area of great interest given its widespread acceptance despite the lack of supporting clinical data. The absence of data limits the understanding of potential clinical benefits of cannabis and the ability of providers to deliver evidence-based recommendations for patient care. We explored cannabis use patterns in patients with early-stage breast cancer in a large multicenter cohort in a state with legalized adult non-medical cannabis.

Materials/methods: Initial questions about cannabis use history and frequency were introduced in Michigan Radiation Oncology Quality Consortium (MROQC) breast cancer patient surveys on 2/1/2020 for female patients receiving radiation after lumpectomy for non-metastatic breast cancer. Expanded questions were introduced on 6/28/2022 to assess mode of administration, active ingredient, and reason for use. Summary statistics were generated. A multivariable model using logistic regression identified patient characteristics associated with cannabis use.

Results: Among 3948 eligible patients, 2738 (69.35%) completed survey questions, and 2462/2738 (89.9%) completed the initial question on cannabis use. Among those, 364/2462 (14.8%) noted cannabis use in the last 30 days, 588 (23.9%) noted remote use (>30 days ago), 1462 (59.4%) reported never having used cannabis, 44 (1.8%) preferred not to answer cannabis use questions, and 4 (0.4%) did not provide use history. Younger age [age <50 vs 60-70, OR 2.5 (95% CI 1.65, 3.79) p<0.001)], Hispanic ethnicity [OR 2.20 (95% CI 1.06, 4.56) p = 0.03], history of smoking [OR 2.56 (95% CI 1.88, 3.48) p<0.001], current smoking [OR 4.70 (95% CI 3.22, 6.86) p<0.001)], and prior chemotherapy [OR 1.40 (95% CI 1.00, 1.96) p = 0.05] predicted recent cannabis use in a multivariable model. Of the 364 patients endorsing cannabis use in the last 30 days, 89 (24.5%), 72 (19.8%), 29 (8.0%), 66 (18.1%), 30 (8.2%), and 78 (21.4%) reported using cannabis 1-2 days, 3-5 days, 6-9 days, 10-19 days, 20-29 days, and all 30 days, respectively. The most common modes of administration among 76 individuals who responded to the expanded questionnaire to date were oral (39.4%), smoking (30.3%), and topical (10.5%). The products used contained tetrahydrocannabinol (THC; 26.3%), cannabidiol (CBD; 19.7%), balanced levels of THC and CBD (19.7%), or active ingredients that were unknown to the patient (34.2%). Patients frequently endorsed cannabis use for insomnia, anxiety, and pain.

Conclusion: Many patients with early-stage breast cancer are using cannabis. Younger age, Hispanic ethnicity, smoking, and chemotherapy history are predictors of cannabis use. Patients are often unaware of the active ingredients in the products that they use, suggesting an important role for patient education and a need to equip providers to advise patients in their care.”

https://pubmed.ncbi.nlm.nih.gov/37786222/

https://www.redjournal.org/article/S0360-3016(23)05292-6/fulltext

Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy

pubmed logo

“In this review article, we embark on a thorough exploration of cannabinoids, compounds that have garnered considerable attention for their potential therapeutic applications. Initially, this article delves into the fundamental background of cannabinoids, emphasizing the role of endogenous cannabinoids in the human body and outlining their significance in studying neurodegenerative diseases and cancer. Building on this foundation, this article categorizes cannabinoids into three main types: phytocannabinoids (plant-derived cannabinoids), endocannabinoids (naturally occurring in the body), and synthetic cannabinoids (laboratory-produced cannabinoids). The intricate mechanisms through which these compounds interact with cannabinoid receptors and signaling pathways are elucidated. A comprehensive overview of cannabinoid pharmacology follows, highlighting their absorption, distribution, metabolism, and excretion, as well as their pharmacokinetic and pharmacodynamic properties. Special emphasis is placed on the role of cannabinoids in neurodegenerative diseases, showcasing their potential benefits in conditions such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis. The potential antitumor properties of cannabinoids are also investigated, exploring their potential therapeutic applications in cancer treatment and the mechanisms underlying their anticancer effects. Clinical aspects are thoroughly discussed, from the viability of cannabinoids as therapeutic agents to current clinical trials, safety considerations, and the adverse effects observed. This review culminates in a discussion of promising future research avenues and the broader implications for cannabinoid-based therapies, concluding with a reflection on the immense potential of cannabinoids in modern medicine.”

https://pubmed.ncbi.nlm.nih.gov/37759788/

https://www.mdpi.com/2218-273X/13/9/1388

Identification of phenolic compounds from inflorescences of non-psychoactive Cannabis sativa L. by UHPLC-HRMS and in vitro assessment of the antiproliferative activity against colorectal cancer

pubmed logo

“Phenolic compounds from Cannabis sativa L. (Cannabaceae family), in particular cannflavins, are known to possess several biological properties. However, their antiproliferative activity, being of great interest from a medicinal chemistry point of view, has not been deeply investigated so far in the literature. In the light of this, the aim of this study was to obtain an enriched fraction of polyphenols (namely PEF) from inflorescences of a non-psychoactive C. sativa (hemp) variety and to evaluate its antiproliferative activity against cancer cells, capitalizing on a new and selective extraction method for hemp polyphenols, followed by preparative flash column chromatography. Untargeted metabolomics, using a new method based on ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS), was applied here for the first time to fully characterize PEF. Then, the main phenolic compounds were quantified by HPLC-UV. The antiproliferative activity of PEF and of the isolated compounds was assessed in vitro for the first time against Caco-2 and SW480 human colon adenocarcinoma cell lines providing promising IC50 values, in comparison with the reference drug used in therapy for this cancer type. Based on these results, PEF can be considered as a new highly potential therapeutic product to be further investigated against colorectal cancer, thanks to the possible synergistic interaction of its compounds.”

https://pubmed.ncbi.nlm.nih.gov/37748359/

https://www.sciencedirect.com/science/article/pii/S0731708523004922?via%3Dihub

Differences in the phospholipid profile of melanocytes and melanoma cells irradiated with UVA and treated with cannabigerol and cannabidiol

pubmed logo

“UV radiation inducing mutations in melanocytes might cause melanoma. As changes in lipid composition and metabolism are associated with many types of cancer including skin cancer, we aimed to evaluate the effects of two phytocannabinoids cannabidiol (CBD) and cannabigerol (CBG), on changes in phospholipid and ceramide (CER) profiles induced by UVA irradiation in human melanocytes and melanoma. UVA radiation caused a significant up-regulation PC, PI and SM species and decrease of CERs content in both types of cells, while up-regulation of PEo was only observed in melanocytes. Exposure of UVA-irradiated melanocytes or melanoma cells to CBD and/or CBG led to significant decrease in relative content of PC, PI and SM specie; however, this effect was more pronounced in cancer cells. Interestingly, only in UVA-irradiated melanocytes and not in melanoma, PEo content was lowered after CBD treatment, while CBG led to additional up-regulation of PEo species. CBD and CBG used together caused decrease of zeta potential, inhibiting PS externalization, and different changes in relative contents of CER and SM species of irradiated and non-irradiated melanoma cells. Obtained results are quite promising due to CBD and CBG abilities to partial reverse pro-cancerogenic changes in phospholipid and CER profiles induced by UVA.”

https://pubmed.ncbi.nlm.nih.gov/37752196/

https://www.nature.com/articles/s41598-023-43363-9

Cannabidiol Inhibits the Proliferation and Invasiveness of Prostate Cancer Cells

pubmed logo

“Prostate cancer is the fifth leading cause of cancer death in men, responsible for over 375,000 deaths in 2020. Novel therapeutic strategies are needed to improve outcomes. Cannabinoids, chemical components of the cannabis plant, are a possible solution.

Preclinical evidence demonstrates that cannabinoids can modulate several cancer hallmarks of many tumor types. However, the therapeutic potential of cannabinoids in prostate cancer has not yet been fully explored. The aim of this study was to investigate the antiproliferative and anti-invasive properties of cannabidiol (CBD) in prostate cancer cells in vitro.

CBD inhibited cell viability and proliferation, accompanied by reduced expression of key cell cycle proteins, specifically cyclin D3 and cyclin-dependent kinases CDK2, CDK4, and CDK1, and inhibition of AKT phosphorylation. The effects of CBD on cell viability were not blocked by cannabinoid receptor antagonists, a transient receptor potential vanilloid 1 (TRPV1) channel blocker, or an agonist of the G-protein-coupled receptor GPR55, suggesting that CBD acts independently of these targets in prostate cancer cells. Furthermore, CBD reduced the invasiveness of highly metastatic PC-3 cells and increased protein expression of E-cadherin.

The ability of CBD to inhibit prostate cancer cell proliferation and invasiveness suggests that CBD may have potential as a future chemotherapeutic agent.”

https://pubmed.ncbi.nlm.nih.gov/37703852/

“These findings suggest that CBD has potential as a future chemotherapeutic agent for prostate cancer.”

https://pubs.acs.org/doi/10.1021/acs.jnatprod.3c00363

CBD Inhibits In Vivo Development of Human Breast Cancer Tumors

pubmed logo

“Inflammation is a critical component of cancer development. Previously, we showed in vitro that IL-1β treatment of non-invasive human breast cancer MCF-7 cells promoted their transition to a malignant phenotype (6D cells). This epithelial-mesenchymal transition was reverted by exposure to cannabidiol (CBD).

We show in a murine model that subcutaneous inoculation of 6D cells induced formation and development of tumors, the cells of which keep traits of malignancy. These processes were interrupted by administration of CBD under two schemes: therapeutic and prophylactic. In the therapeutic scheme, 6D cells inoculated mice developed tumors that reached a mean volume of 540 mm3 at 45 days, while 50% of CBD-treated mice showed gradual resorption of tumors. In the prophylactic scheme, mice were pre-treated for 15 days with CBD before cells inoculation. The tumors formed remained small and were eliminated under continuous CBD treatment in 66% of the animals. Histological and molecular characterization of tumors, from both schemes, revealed that CBD-treated cells decreased the expression of malignancy markers and show traits related with apoptosis.

These results confirm that in vivo CBD blocks development of breast cancer tumors formed by cells induced to malignancy by IL-1β, endorsing its therapeutic potential for cancer treatment.”

https://pubmed.ncbi.nlm.nih.gov/37686042/

“In conclusion, the present study shows that CBD, properly administered, can effectively block development of human breast cancer tumors in vivo, without causing adverse effects, by regulating in the tumor cells the expression of malignant traits and bearing characteristics of a possible route via apoptosis, both favorable attributes for an anticancer drug.”

https://www.mdpi.com/1422-0067/24/17/13235