Therapeutic and Supportive Effects of Cannabinoids in Patients with Brain Tumors (CBD Oil and Cannabis)

SpringerLink

“The potential medicinal properties of Cannabis continue to garner attention, especially in the brain tumor domain. This attention is centered on quality of life and symptom management; however, it is amplified by a significant lack of therapeutic choices for this specific patient population.

While the literature on this matter is young, published and anecdotal evidence imply that cannabis could be useful in treating chemotherapy-induced nausea and vomiting, stimulating appetite, reducing pain, and managing seizures. It may also decrease inflammation and cancer cell proliferation and survival, resulting in a benefit in overall patient survival.

Current literature poses the challenge that it does not provide standardized guidance on dosing for the above potential indications and cannabis use is dominated by recreational purposes. Furthermore, integrated and longitudinal studies are needed but these are a challenge due to arcane laws surrounding the legality of such substances. The increasing need for evidence-based arguments about potential harms and benefits of cannabis, not only in cancer patients but for other medical use and recreational purposes, is desperately needed.”

https://pubmed.ncbi.nlm.nih.gov/36633803/

https://link.springer.com/article/10.1007/s11864-022-01047-y

Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment

ijms-logo

“Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa‘s biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.”

https://pubmed.ncbi.nlm.nih.gov/36614303/

“In conclusion, there is a complex array of effects that polyphenolic and cannabinoid compounds elicit in relation to melanoma. Multiple biochemical and genetic cascades are regulated through the presence of these natural substances. Polyphenolic compounds emergingly demonstrate a significant capacity to mediate many of the impacts of cancer, including pain, inflammation and invasiveness. Combined administration of polyphenol compounds has shown existing promise for improvement of potency and bioactivity of these substances. To combat the complexity of cancer, new pharmacological perspectives are necessary. Accordingly, plant polyphenols, particularly those of cannabis provide a deep well of structural potential for the emergence of novel drugs with multi-applicability to the total sphere of cancer treatment. This is merely the budding tip of biocompounds available for exploration in plant-based medicine and is a substantive base for future research.”

https://www.mdpi.com/1422-0067/24/1/859

Cannabidiol as Self-Assembly Inducer for Anticancer Drug-Based Nanoparticles

molecules-logo

“Cannabidiol (CBD) is a biologically active compound present in the plants of the Cannabis family, used as anticonvulsant, anti-inflammatory, anti-anxiety, and more recently, anticancer drug. In this work, its use as a new self-assembly inducer in the formation of nanoparticles is validated. The target conjugates are characterized by the presence of different anticancer drugs (namely N-desacetyl thiocolchicine, podophyllotoxin, and paclitaxel) connected to CBD through a linker able to improve drug release. These nanoparticles are formed via solvent displacement method, resulting in monodisperse and stable structures having hydrodynamic diameters ranging from 160 to 400 nm. Their biological activity is evaluated on three human tumor cell lines (MSTO-211H, HT-29, and HepG2), obtaining GI50 values in the low micromolar range. Further biological assays were carried out on MSTO-211H cells for the most effective NP 8B, confirming the involvement of paclitaxel in cytotoxicity and cell death mechanism.”

https://pubmed.ncbi.nlm.nih.gov/36615306/

https://www.mdpi.com/1420-3049/28/1/112

Formulation and development of novel lipid-based combinatorial advanced nanoformulation for effective treatment of non-melanoma skin cancer

International Journal of Pharmaceutics

“Non-melanoma skin cancer is one of the most common malignancies reported with high number of morbidities, demanding an advanced treatment option with superior chemotherapeutic effects. Due to high degree of drug resistance, conventional therapy fails to meet the desired therapeutic efficacy. To break the bottleneck, nanoparticles have been used as next generation vehicles that facilitate the efficient interaction with the cancer cells.

Here, we developed combined therapy of 5-fluorouracil (5-FU) and cannabidiol (CBD)-loaded nanostructured lipid carrier gel (FU-CBD-NLCs gel). The NLCs were optimized using central composite design that showed an average particle size of 206 nm and a zeta potential of -34 mV. In addition, in vitro and ex vivo drug permeations studies demonstrated the effective delivery of both drugs in the skin layers via lipid structured nanocarriers.

Also, the prepared FU-CBD-NLCs showed promising effect in-vitro cell studies including MTT assays, wound healing and cell cycle as compared to the conventional formulation. Moreover, dermatokinetic studies shows there was superior deposition of drugs at epidermal and the dermal layer when treated with FU-CBD-NLCs.

In the end, overall study offered a novel combinatorial chemotherapy that could be an option for the treatment of non-melanoma skin cancer.”

https://pubmed.ncbi.nlm.nih.gov/36608807/

https://www.sciencedirect.com/science/article/abs/pii/S0378517322011358?via%3Dihub

[A mini-review on anti-tumor effect of cannabidiol]

“Cannabidiol is the main non-psychoactive component of Cannabis sativa, which has multiple medicinal activities, such as antiepileptic, immunomodulation, analgesic, antioxidant, anticonvulsant, anti-anxiety and other functions.

In recent years, it has been found that cannabidiol can inhibit the proliferation of various tumor cells, induce apoptosis and autophagy of tumor cells, arrest cell cycle, interrupt invasion and metastasis of tumor cells, regulate tumor microenvironment, exert synergistic therapy with other chemotherapeutic drugs, and reduce the toxicity of chemotherapeutic drugs. However, its anti-tumor effect remains controversial and its application is limited. The study of microspheres, nano liposomes and other new drug delivery systems can improve the anti-tumor effect of cannabidiol.

In this study, the anti-tumor mechanism and application of cannabidiol were summarized and discussed in order to provide inspirations for its further investigation and application.”

https://pubmed.ncbi.nlm.nih.gov/36604902/

https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.19540/j.cnki.cjcmm.20220906.601

Comparative changes in breast cancer cell proliferation and signalling following somatostatin and cannabidiol treatment

Biochemical and Biophysical Research Communications

“Breast cancer is the most commonly diagnosed cancer and a leading cause of cancer-related death among women worldwide. Somatostatin (SST) and Cannabinoids have an anti-proliferative and pro-apoptotic effect, but the mechanisms of their actions remain elusive.

In the present study, we have evaluated the effects of SST, Cannabidiol (CBD) alone or in combination on receptor expression, cell proliferation and apoptosis and related downstream signalling pathways in MDA-MB-231 and MCF-7 breast cancer cells.

The results presented here demonstrate the cell type and agonist-dependent changes in receptor expression at the cell membrane, inhibition of cell proliferation and increased apoptosis following treatment with SST and CBD alone and in combination. In comparison to MDA-MB-231 cells, MCF-7 cells treated with SST alone and in combination with CBD exhibited inhibition of phosphorylated Protein Kinase B (pAKT) and phosphorylated-Phosphoinositide 3-Kinase (pPI3K) expression. Importantly, inhibition of PI3K/AKT activation was accompanied by enhanced PTEN expression in MCF-7 cells.

These results highlight the possible interaction between SSTR and CBR subtypes with the implication in the modulation of receptor expression, cell viability and signal transduction pathways in a breast cancer cell type-dependent manner.”

https://pubmed.ncbi.nlm.nih.gov/36586156/

“Marijuana (or cannabis) is a source of large numbers of compounds known as phytocannabinoids, such as delta-9-tetrahydrocannabinol (Δ9-THC) and Cannabidiol (CBD) that have therapeutic implications in cancer, pain, inflammation and neurological diseases.”

https://www.sciencedirect.com/science/article/abs/pii/S0006291X22017442?via%3Dihub

Structural analysis of cannabinoids against EGFR-TK leads a novel target against EGFR-driven cell lines

Current Research in Pharmacology and Drug Discovery

“Epidermal growth factor receptor (EGFR) is a member of the ErbB family of proteins and are involved in downstream signal transduction, plays prominent roles in cell growth regulation, proliferation, and the differentiation of many cell types. They are correlated with the stage and severity of cancer. Therefore, EGFRs are targeted proteins for the design of new drugs to treat cancers that overexpress these proteins. Currently, several bioactive natural extracts are being studied for therapeutic purposes.

Cannabis has been reported in many studies to have beneficial medicinal effects, such as anti-inflammatory, analgesic, antibacterial, and anti-inflammatory effects, and antitumor activity. However, it is unclear whether cannabinoids reduce intracellular signaling by inhibiting tyrosine kinase phosphorylation. In this study, cannabinoids (CBD, CBG, and CBN) were simulated for binding to the EGFR-intracellular domain to evaluate the binding energy and binding mode based on molecular docking simulation.

The results showed that the binding site was almost always located at the kinase active site. In addition, the compounds were tested for binding affinity and demonstrated their ability to inhibit kinase enzymes. Furthermore, the compounds potently inhibited cellular survival and apoptosis induction in either of the EGFR-overexpressing cell lines.”

https://pubmed.ncbi.nlm.nih.gov/36568260/

“Cannabinoids reduced cell viability in EGFR-positive cells A431 and A549 by decreasing the tyrosine-kinase phosphorylation activity of EGFR.•

In silico analysis shows that cannabinoids bind to the active site of the EGFR-tyrosine kinase by the hydrophobic interaction and hydrogen bonding.•

CBD and CBG significantly induce cancer cells apoptosis in EGFR-positive cell A431.•

The consistent findings suggested that CBD and CBG could be developed as natural tumor-targeting agents for EGFR-positive cancers.

These findings demonstrate that the cannabinoids could be transformed into unique natural compounds for use in the development of anti-EGFR-positive cancer therapies.”

https://www.sciencedirect.com/science/article/pii/S2590257122000529?via%3Dihub


A zebrafish HCT116 xenograft model to predict anandamide outcomes on colorectal cancer

Cell Death & Disease

“Colon cancer is one of the leading causes of death worldwide. In recent years, cannabinoids have been extensively studied for their potential anticancer effects and symptom management. Several in vitro studies reported anandamide’s (AEA) ability to block cancer cell proliferation and migration, but evidence from in vivo studies is still lacking. Thus, in this study, the effects of AEA exposure in zebrafish embryos transplanted with HCT116 cells were evaluated.

Totally, 48 hpf xenografts were exposed to 10 nM AEA, 10 nM AM251, one of the cannabinoid 1 receptor (CB1) antagonist/inverse agonists, and to AEA + AM251, to verify the specific effect of AEA treatment. AEA efficacy was evaluated by confocal microscopy, which demonstrated that these xenografts presented a smaller tumor size, reduced tumor angiogenesis, and lacked micrometastasis formation.

To gain deeper evidence into AEA action, microscopic observations were completed by molecular analyses. RNA seq performed on zebrafish transcriptome reported the downregulation of genes involved in cell proliferation, angiogenesis, and the immune system. Conversely, HCT116 cell transcripts resulted not affected by AEA treatment. In vitro HCT116 culture, in fact, confirmed that AEA exposure did not affect cell proliferation and viability, thus suggesting that the reduced tumor size mainly depends on direct effects on the fish rather than on the transplanted cancer cells.

AEA reduced cell proliferation and tumor angiogenesis, as suggested by socs3 and pcnp mRNAs and Vegfc protein levels, and exerted anti-inflammatory activity, as indicated by the reduction of il-11a, mhc1uba, and csf3b mRNA. Of note, are the results obtained in groups exposed to AM251, which presence nullifies AEA’s beneficial effects.

In conclusion, this study promotes the efficacy of AEA in personalized cancer therapy, as suggested by its ability to drive tumor growth and metastasis, and strongly supports the use of zebrafish xenograft as an emerging model platform for cancer studies.”

https://pubmed.ncbi.nlm.nih.gov/36564370/

“Collectively, our data suggest a pivotal role of AEA in the anti-angiogenic, anti-proliferative, and anti-inflammatory process in intercellular tumor-endothelial cell communication resulting in the containment of tumor and evidenced that zebrafish larvae xenografts constitute a promising fast assay for precision medicine, bridging the gap between genotype and phenotype in an in vivo setting.”

https://www.nature.com/articles/s41419-022-05523-z

Cannabidiol and Its Combinations with Nonsteroidal Anti-Inflammatory Drugs Induce Apoptosis and Inhibit Activation of NF-κB Signaling in Vulvar Squamous Cell Carcinoma

molecules-logo

“Vulvar squamous cell carcinoma (VSCC) is a rare malignancy with a relatively good prognosis. However, the prognosis remains poor for elderly patients and those with a significant depth of tumor invasion; thus, novel treatment modalities are needed.

The aim of this study was to analyze the impact of cannabidiol (CBD) and its combination with NSAIDs, diclofenac (DIC) and ibuprofen (IBU) on VSCC cells. In this regard, the MTT test was applied for cytotoxicity analysis. Moreover, the influence of CBD, DIC and IBU, as well as their combinations, on apoptosis and cell cycle distribution were analyzed by flow cytometry. The mechanisms of action of the analyzed compounds, including their impact on NF-κB signaling, p53 and COX-2 expression were evaluated using Western blot.

This study shows that CBD and its combinations with NSAIDs are cytotoxic to A431 cells, but they also reduce, in a dose-dependent manner, the viability of immortalized keratinocyte HaCaT cells, and human umbilical vein cell line, EA.hy926. Moreover, the compounds and their combinations induced apoptosis, diminished the NF-κB signaling activation and reduced COX-2 expression.

We conclude that CBD and its combination with DIC or IBU are promising candidates for the adjuvant treatment of high-risk VSCC patients.”

https://pubmed.ncbi.nlm.nih.gov/36557911/

“The results of our study regarding the use of a CDB and NSAIDs, as well as the combi-treatment of CBD together with NSAIDs, provide the foundation for a new approach to therapy of VSCC.”

https://www.mdpi.com/1420-3049/27/24/8779

Real-Time Monitoring of the Cytotoxic and Antimetastatic Properties of Cannabidiol in Human Oral Squamous Cell Carcinoma Cells Using Electric Cell-Substrate Impedance Sensing

ijms-logo

“Cannabidiol (CBD) is an active natural compound that is extracted from Cannabis sativa. Previous studies show that CBD is a nonpsychotropic compound with significant anticancer effects.

This study determines its cytotoxic effect on oral cancer cells and OEC-M1 cells and compares the outcomes with a chemotherapeutic drug, cisplatin. This study has investigated the effect of CBD on the viability, apoptosis, morphology, and migration of OEC-M1 cells. Electric cell-substrate impedance sensing (ECIS) is used to measure the change in cell impedance for cells that are treated with a series concentration of CBD for 24 h.

AlamarBlue and annexin V/7-AAD staining assays show that CBD has a cytotoxic effect on cell viability and induces cell apoptosis. ECIS analysis shows that CBD decreases the overall resistance and morphological parameters at 4 kHz in a concentration-dependent manner. There is a significant reduction in the wound-healing recovery rate for cells that are treated with 30 μM CBD.

This study demonstrates that ECIS can be used for in vitro screening of new chemotherapy and is more sensitive, functional, and comprehensive than traditional biochemical assays. CBD also increases cytotoxicity on cell survival and the migration of oral cancer cells, so it may be a therapeutic drug for oral cancer.”

https://pubmed.ncbi.nlm.nih.gov/36555480/

“In conclusion, this study determines the effect of CBD on OEC-M1 cells. The cytotoxicity results show that CBD at higher concentrations (100 μM) increases cytotoxicity and is more likely to lead to the apoptosis of cancer cells more than cisplatin at the same concentration. ECIS is used to determine the effect of the drug on the adhesion, spread, and migration of cells.

The results show that there is a linear, concentration-dependent decrease in OEC-M1 cells that are treated with CBD. Treatment with CBD at low concentrations (30 μM) completely inhibits cell migration and micromotion without affecting cell viability and apoptosis.

In comparison with cisplatin, this study shows that CBD has a greater ability to inhibit metastasis and trigger apoptosis. It might work successfully as a treatment for oral cancer.

We can also screen drugs more efficiently and rapidly by using the Var32 analysis method in combination with ECIS. ECIS provides a more precise measurement of experimental data and prevents operator errors by its real-time monitoring. It is promising for possible uses in new drug screening, and it might promote the development of oral cancer treatments and other medical applications.”

https://www.mdpi.com/1422-0067/23/24/15842