“Breast cancer is the main cancer type with more than 2.2 million cases in 2020, and is the principal cause of death in women; with 685000 deaths in 2020 worldwide. The estrogen receptor is involved at least in 70% of breast cancer diagnoses, and the agonist and antagonist properties of the drug in this receptor play a pivotal role in the control of this illness.
This work evaluated the agonist and antagonist mechanisms of 30 cannabinoids by employing molecular docking and dynamic simulations. Compounds with docking scores < -8 kcal/mol were analyzed by molecular dynamic simulation at 300 ns, and relevant insights are given about the protein’s structural changes, centered on the helicity in alpha-helices H3, H8, H11, and H12.
Cannabicitran was the cannabinoid that presented the best relative binding-free energy (-34.96 kcal/mol), and based on rational modification, we found a new natural-based compound with relative binding-free energy (-44.83 kcal/mol) better than the controls hydroxytamoxifen and acolbifen. Structure modifications that could increase biological activity are suggested.”
“Background: The use of medical cannabis has rapidly increased among cancer patients worldwide. Cannabis is often administered concomitantly with cancer medications, including immune checkpoint inhibitors (ICIs). As the cannabinoid receptors are abundantly expressed and modulate immune cells, it has been hypothesised that cannabis may attenuate the activity of ICIs. We aimed to assess the effect of cannabis on ICIs’ efficiency in patients having non-small cell lung cancer (NSCLC).
Method: The murine model of CT26 tumour-bearing mice treated with an anti-PD-1 antibody and Δ9-tetrahydrocannabinol (THC) was used to evaluate the interaction between THC and ICIs in vivo. Correlation between use of medical cannabis and clinical outcome was evaluated in a cohort of 201 consecutive metastatic NSCLC patients treated with monotherapy pembrolizumab as a first-line treatment.
Results: Median overall survival (OS) of the mice receiving a control vehicle, THC, anti-PD-1 antibody or their combination was 21, 24, 31 and 54 days, respectively (p < 0.05 for the combination treatment compared to a control vehicle), indicating that THC did not reduce the efficacy of anti-PD-1 therapy. Of 201 NSCLC patients treated with first-line monotherapy pembrolizumab for metastatic disease, 102 (50.7%) patients received licence for cannabis within the first month of treatment. Cannabis-treated patients were younger compared to the cannabis naïve patients (median age 68 versus 74, p = 0.003), with female predominance (62, 60.8% versus 34, 34.3%, p = 0.002) and with more prevailing brain metastasis (15.7% versus 5%, p = 0.013). Similar distribution of histology, smoking status, ECOG (Eastern Cooperative Oncology Group) and programmed death-ligand 1 expression was noted between the groups. Liver metastases were marginally significant (19.6% versus 10.1%, p = 0.058). The most common indication for cannabis was pain (71%) followed by loss of appetite (34.3%). Time to tumour progression was similar for cannabis-naive and cannabis-treated patients (6.1 versus 5.6 months, respectively, 95% confidence interval, 0.82 to 1.38, p = 0.386), while OS was numerically higher in the cannabis-naive group (54.9 versus 23.6 months) but did not reach statistical significance (95% confidence interval 0.99 to 2.51, p = 0.08). In multivariate analyses, we did not identify cannabis use as an independent predictor factor for mortality.
Conclusions: Preclinical and clinical data suggest no deleterious effect of cannabis on the activity of pembrolizumab as first-line monotherapy for advanced NSCLC. The differences in OS can most likely be attributed to higher disease burden and more symptomatic disease in the cannabis-treated group. These data provide reassurance regarding the absence of a deleterious effect of cannabis in this clinical setting.”
“The significant resistance to currently available chemotherapeutics makes treatment for TNBC a key clinical concern. Herein, we studied the anti-cancer potentials of synthetic cannabidiol (CBD) and Tetrahydrocannabivarin (THCV) when used alone or in combination with doxorubicin (DOX) against MDA-MB-231 resistant cells. Pre-treatment with CBD and THCV significantly increased the cytotoxicity of DOX in MDA-MB-231 2D and 3D cultures that were DOX-resistant. Transcriptomics and Proteomics studies revealed that CBD and THCV, by downregulating PD-L1, TGF-β, sp1, NLRP3, P38-MAPK, and upregulating AMPK induced apoptosis leading to improved DOX’s chemosensitivity against DOX resistant MDA-MB-231 tumors in BALB/c nude mice. CBD/THCV in combination with DOX significantly inhibited H3k4 methylation and H2K5 acetylation as demonstrated by western blotting and RT-PCR. Based on these findings, CBD and THCV appear to counteract histone modifications and their subsequent effects on DOX, resulting in chemo-sensitization against MDA-MB-231 resistant cancers.”
“Cannabis anecdotally has been a folklore medicine for a longtime to treat a variety of disease states. In recent years, the therapeutic use of cannabis and cannabinoids has garnered more acceptance in the public domain. Several Phyto-cannabinoids are available from the the plant Cannabis sativa along with terpenes and they target the endocannabinoid system and several other biological pathways. Hence, these agents can possibly have a array of therapeutic effects on the central nervous system and peripheral immune, cardiovascular, reproductive, and ocular systems.
Our findings show that CBD and THCV were found to overcome resistance against MDA-MB-231 resistant cell line in vitro in 2D and 3D cultures by several folds. Further, both these agents in combination with DOX showed synergism as determined by the isobolographic method.”
“Introduction: The use of Cannabis sativa L. in health care requires stringent care for the optimal production of the bioactive compounds. However, plant phenotypes and the content of secondary metabolites, such as phytocannabinoids, are strongly influenced by external factors, such as nutrient availability. It has been shown that phytocannabinoids can exhibit selective cytotoxicity against various cancer cell lines while protecting healthy tissue from apoptosis.
Research Aim: This study aimed to clarify the cytotoxic effect of cannabis extracts on colorectal cell lines by identifying the main active compounds and determining their abundance and activity across all developmental stages of medical cannabis plants cultivated under hydroponic conditions.
Materials and Methods: Dimethyl sulfoxide extracts of medical cannabis plants bearing the genotype classified as chemotype I were analyzed by high-performance liquid chromatography, and their cytotoxic activity was determined by measuring cell viability by methylthiazolyldiphenyl-tetrazolium bromide assay on the human colon cancer cell lines, Caco-2 and HT-29, and the normal human epithelial cell line, CCD 841 CoN.
Results: The most abundant phytocannabinoid in cannabis extracts was tetrahydrocannabinolic acid (THCA). Its maximum concentrations were reached from the 7th to the 13th plant vegetation week, depending on the nutritional cycle and treatment. Almost all extracts were cytotoxic to the human colorectal cancer (CRC) cell line HT-29 at lower concentrations than the other cell lines. The phytocannabinoids that most affected the cytotoxicity of individual extracts on HT-29 were cannabigerol, Δ9-tetrahydrocannabinol, cannabidiol, cannabigerolic acid, and THCA. The tested model showed almost 70% influence of these cannabinoids. However, THCA alone influenced the cytotoxicity of individual extracts by nearly 65%.
Conclusions: Phytocannabinoid extracts from plants of the THCA-dominant chemotype interacted synergistically and showed selective cytotoxicity against the CRC cell line, HT-29. This positive extract response indicates possible therapeutic value.”
“Background: Accumulating evidence suggests overexpression of Eph receptors is associated with malignant human gliomas. Inhibiting interactions of Eph receptors with their ephrin ligands may improve clinical outcomes in glioma patients. The present study investigated the potential of cannabinoids to bind Eph receptors and block Eph/ephrin interactions.
Methods: Twelve major cannabinoids were computationally docked with ligand binding domains from six glioma-associated Eph receptors through Auto Dock Vina to measure their potential binding affinities. The molecular structures and residue interactions of the most favorable poses for each receptor binding domain were further visually examined.
Results: Cannabichromene (CBC) exhibited the most favorable binding with EphA2, EphA3, and EphB4 receptor ligand binding domains while tetrahydrocannabinol (THC) was predicted to bind favorably with EphB2 and EphB3 receptor ligand binding domains. EphA4 showed the best potential binding affinity with cannabidivarin (CBDV). Further analysis revealed that these cannabinoids bind to specific locations on Eph receptors required for Eph/ephrin interactions.
Conclusion: The findings suggest that certain cannabinoids can effectively bind to hydrophobic pockets required for ephrin binding and thereby be used to block subsequent Eph/ephrin interactions.”
“Cholangiocarcinoma (CCA) is a very aggressive tumor. The development of a new therapeutic drug for CCA is required.
This study aims to evaluate the antitumor effect of ∆9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana (Cannabis sativa), and cannabinol (CBN), a minor, low-psychoactive cannabinoid, on CCA cells and xenograft mice.
THC and CBN were isolated, and their identities were confirmed by comparing 1H- and 13C-NMR spectra and mass spectra with a database. Cell proliferation, cell migration, and cell apoptosis assays were performed in HuCCT1 human CCA cells treated with THC or CBN. The phosphorylation of signaling molecules in HuCCT1 cells was detected. To determine the effects of THC and CBN in an animal model, HuCCT1 cells were inoculated subcutaneously into nude mice. After the tumors reached an appropriate size, the mice were treated with THC or CBN for 21 days. Tumor volumes were monitored and calculated. The 1H- and 13C-NMR data of THC and CBN were almost identical to those reported in the literature.
THC and CBN significantly inhibited cell proliferation and migration and induced apoptosis in HuCCT1 cells. The phosphorylation of AKT, GSK-3α/β, and ERK1/2 decreased in HuCCT1 cells treated with THC or CBN. CCA xenograft mice treated with THC showed significantly slower tumor progression and smaller tumor volumes than control mice. THC and CBN induced apoptosis in CCA by inhibiting the AKT and MAPK pathways.
These findings provide a strong rationale for THC and CBN as therapeutic options for CCA.”
“THC and CBN induced apoptosis in CCA by inhibiting the AKT and MAPK pathways, leading to a decrease in cell proliferation in vitro and tumor volume in vivo. In addition, in this animal model, THC appeared to be superior in potency to CBN. These findings provide a strong rationale for THC and CBN as therapeutic options for CCA.”
“Background: Lung cancer remains a major factor contributing to morbidity and mortality worldwide. Apart from the chemotherapeutic agents in routine use, factors targeting novel molecular pathways are in clinical trials and provide hope for terminal lung cancer patients. The endocannabinoid system has recently become a popular field of study. Many experimental studies have shown that CBD and THC could be used outside of palliative care, as they play a major role in lung cancer cell apoptosis. The objective of this review is to evaluate the antitumorigenic mechanisms of CBD in lung cancer cells.
Methods: We searched the databases MEDLINE, clinicaltrials.gov, CENTRAL, and google scholar using specific terms. A total of 246 studies were screened, and nine studies were included in the review. All the selected studies were conducted in vitro, and four of which also had an in vivo component. Included studies were assessed in our review using the ToxRTool.
Results and conclusion: The most common cell line used in all of the studies was A549; however, some studies included other cell lines, including H460 and H358. We concluded that CBD has direct antineoplastic effects on lung cancer cells by various mechanisms mediated by cannabinoid receptors or independent of them. All studies referred to an in vitro model; hence, further research is required for this data to have any clinical application.”
“Endogenous and exogenous cannabinoids modulate many physiological and pathological processes by binding classical cannabinoid receptors 1 (CB1) or 2 (CB2) or non-cannabinoid receptors.
Cannabinoids are known to exert antiproliferative, apoptotic, anti-migratory and anti-invasive effect on cancer cells by inducing or inhibiting various signaling cascades.
In this chapter, we specifically emphasize the latest research works about the alterations in endocannabinoid system (ECS) components in malignancies and cancer cell proliferation, migration, invasion, angiogenesis, autophagy, and death by cannabinoid administration, emphasizing their mechanism of action, and give a future perspective for clinical use.”
“Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy.
Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms.
This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.”
“Colorectal cancer (CRC) is one of the diseases with the highest rates of prevalence and mortality despite therapeutic methods in the world. In particular, there are not enough methods to treat metastasis of CRC cells to distant organs. Cannabis sativa Linne (C. sativa) is a popular medicinal plant used by humans to treat many diseases. Recently, extracts of C. sativa have shown diverse pharmacological effects as a result of choosing different extraction methods. In this study, we performed experiments to confirm the inhibitory effect and related mechanisms of supercritical extract of C. sativa on metastatic CRC cells. The effect of SEC on the viability of CRC cell lines, CT26 and HCT116, was determined using CCK reagent. Flow cytometry was performed to confirm whether SEC can promote cell cycle arrest and apoptosis. Additionally, SEC reduced proliferation of CT26 and HCT116 cells without causing toxicity to normal colon cell line CCD-18Co cells. SEC treatment reduced colony formation in both CRC cell lines, promoted G0/G1 phase arrest and apoptosis in CT26 and HCT116 cells through AMPK activation and MAPKs such as ERK, JNK, and p38 inactivation. Moreover, oral administration of SEC decreased pulmonary metastasis of CT26 cells. Our research demonstrates the inhibitory effect of SEC on CRC cell proliferation and metastasis. Thus, SEC might have therapeutic potential for CRC treatment.”