Cannabidiol attenuates lipid metabolism and induces CB1 receptor-mediated ER stress associated apoptosis in ovarian cancer cells

pubmed logo

“Ovarian cancer (OC) is the most deadly gynecological tumor. OC cells utilize cellular metabolic reprogramming to gain a survival advantage, particularly through aberrant lipid metabolic process.

As the primary ingredient in exogenous cannabinoids, cannabidiol (CBD) has been confirmed to exhibit antitumor activity in preclinical studies. However, it is still unclear whether CBD can disrupt fatty acid metabolism and induce apoptosis in OC cells.

In this study, we have demonstrated that CBD significantly inhibits the proliferation of OCs through a cannabinoid receptor type 1 (CB1R)-mediated manner.

Fatty acid metabolic profiling and flow cytometry analysis revealed that CBD has the ability to decrease fatty acid levels and significantly suppress the transcription of genes involved in fatty acid uptake and synthesis in ES-2 cells. In addition, the analysis from RNA-seq and real-time RT-PCR revealed that CBD activated the endoplasmic reticulum (ER) stress pathway. Conversely, by supplementation with unsaturated fatty acid or blocking CB1R, ER stress or reactive oxygen species (ROS) signals with specific inhibitors could significantly relieve CBD induced, dose-dependent, ER stress associated apoptosis, G0-G1 phase arrest, and mitochondrial dysfunction.

Taken collectively, these data indicate that CBD may disrupt lipid metabolism, and lead to ER stress-related apoptosis in OCs. Our findings may provide a theoretical mechanism for anti-ovarian cancer using CBD.”

https://pubmed.ncbi.nlm.nih.gov/39910152/

“Preclinical studies have demonstrated that CBD, either as a monotherapy or in conjunction with other treatments, holds potential as a novel anti-tumor, anti-inflammatory, and analgesic agent. Our results demonstrated that CBD promoted OC cells apoptosis and G0-G1 phase arrest by disrupting the CBR1-mediated lipid metabolism and ER stress- and mitochondrial dysfunction-associated apoptosis signaling pathways (Fig. 8). Therefore, CBD may serve as a potential candidate for adjuvant therapy in the treatment of ovarian cancer. However, larger-scale clinical studies involving more patient samples and detailed dose-response relationship analyses are still needed to confirm the efficacy of CBD in cancer patients.”

https://www.nature.com/articles/s41598-025-88917-1

GPR55 in the tumor microenvironment of pancreatic cancer controls tumorigenesis

pubmed logo

“Background: The G protein-coupled receptor 55 (GPR55) is part of an expanded endocannabinoid system (ECS), and plays a pro-tumorigenic role in different cancer models, including pancreatic cancer. Next to cancer cells, various cells of the immune tumor microenvironment (TME) express receptors of the ECS that critically determine tumor growth. The role of GPR55 in cancer cells has been widely described, but its role in the immune TME is not well understood.

Methods: We intended to uncover the role of GPR55 in tumor immunity in a model of pancreatic ductal adenocarcinoma (PDAC). To this end, a KPCY tumor cell line or a GPR55-overexpressing KPCY cell line (KPCY55) from murine PDAC were subcutaneously injected into wildtype (WT) and GPR55 knockout (KO) mice, and immune cell populations were evaluated by flow cytometry.

Results: Deficiency of GPR55 in the TME led to reduced tumor weight and volume, and altered the immune cell composition of tumors, favoring an anti-tumorigenic environment by increasing the number of CD3+ T cells, particularly CD8+ T cells, and the expression of PDL1 on macrophages. RNA-seq pathway analysis revealed higher T cell activity in KPCY55 tumors of GPR55 KO vs. WT mice. In addition, tumors from GPR55 KO mice displayed increased levels of T cell chemokines Cxcl9 and Cxcl10. Migration of T cells from GPR55 KO mice towards CXCL9 was increased in comparison to T cells from WT mice, suggesting that a CXCR3/CXCL9 axis was involved in T cell influx into tumors of GPR55 KO mice. Notably, anti-PD-1 immunotherapy increased tumor burden in WT mice, while this effect was absent in the GPR55 KO mice.

Conclusion: Our study indicates that GPR55 in TME cells may drive tumor growth by suppressing T cell functions, such as migration, in a model of PDAC, making it an interesting target for immunotherapies.”

https://pubmed.ncbi.nlm.nih.gov/39885986/

“Our study indicates that GPR55 in TME cells may drive tumor growth by suppressing T cell functions, such as migration, in a model of PDAC, making it an interesting target for immunotherapies.”

https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1513547/full

“GPR55 – a putative “type 3″ cannabinoid receptor in inflammation”

https://pubmed.ncbi.nlm.nih.gov/26669245/

“Therapeutic targeting of the tumor microenvironments with cannabinoids and their analogs: Update on clinical trials”

https://pubmed.ncbi.nlm.nih.gov/37146933/

“Anti-proliferative and apoptotic effect of cannabinoids on human pancreatic ductal adenocarcinoma xenograft in BALB/c nude mice model”

https://pubmed.ncbi.nlm.nih.gov/38499634/

“Antitumor Effects of Cannabinoids in Human Pancreatic Ductal Adenocarcinoma Cell Line (Capan-2)-Derived Xenograft Mouse Model”

https://pubmed.ncbi.nlm.nih.gov/35937289/

“Cannabinoid improves survival rates of mice with pancreatic cancer”

https://medicalxpress.com/news/2018-07-cannabinoid-survival-mice-pancreatic-cancer.html

Cannabidiol Ameliorates Doxorubicin-Induced Myocardial Injury via Activating Hippo Pathway

pubmed logo

“Background: Doxorubicin (DOX) is a chemotherapeutic agent widely used for cancer treatment and has non-negligible cardiotoxicity. Some previous studies have reported that cannabidiol (CBD) has cardioprotective effects. In this study, we evaluated the protective effects of CBD against DOX-induced cardiomyocyte injury, and explored the downstream molecular mechanism.

Methods and materials: GSE193861, containing healthy myocardial tissues and myocardial tissues with DOX-induced injury, was analyzed to screen for the involved proteins and pathways. Molecular docking was performed to identify candidate drugs. After H9c2 cells were treated with DOX and CBD, their viability, oxidative stress, and apoptosis were assessed. After YAP depletion, the role of the Hippo pathway in CBD function was investigated. C57BL/6 mice were treated with DOX to establish an in vivo model, and CBD and verteporfin (VP) were used to treat the mice. Histological analyses and immunofluorescence were used to evaluate myocardial tissue injury, and apoptosis and oxidative stress of the myocardial tissues were also analyzed. Western blotting was used to investigate the regulatory effects of CBD on the Hippo and apoptosis-related pathways.

Results: Bioinformatic analysis suggested that the Hippo pathway was a crucial pathway involved in DOX-induced myocardial injury. Molecular docking showed that CBD targeted multiple regulators of the Hippo pathway. CBD showed cardioprotective effects against DOX-induced myocardial injury both in vitro and in vivo and regulated Hippo pathway activity in cardiomyocytes. After inactivation of the Hippo pathway by YAP knockdown or VP intervention, the protective effects of CBD were reversed.

Conclusion: For the first time, we revealed that CBD is likely to reduce DOX-induced myocardial injury by regulating the Hippo signaling pathway.”

https://pubmed.ncbi.nlm.nih.gov/39876987/

“Overall, this study reports that CBD alleviates DOX-induced myocardial injury by regulating the Hippo pathway.”

https://www.dovepress.com/cannabidiol-ameliorates-doxorubicin-induced-myocardial-injury-via-acti-peer-reviewed-fulltext-article-DDDT

Exploring the Therapeutic Potential of Cannabidiol in U87MG Cells: Effects on Autophagy and NRF2 Pathway

pubmed logo

“Cannabinoids include both endogenous endocannabinoids and exogenous phytocannabinoids, such as cannabidiol (CBD), and have potential as therapeutic agents in cancer treatment due to their selective anticancer activities.

CBD exhibits both antioxidant and pro-oxidant effects depending on its concentration and cell types. These properties allow CBD to influence oxidative stress responses and potentially enhance the efficacy of antitumor therapies.

In this study, we treated U87MG glioma cells with low dose (1 μM) CBD and evaluated its molecular effects.

Our findings indicate that CBD reduced cell viability by 20% (p < 0.05) through the alteration of mitochondrial membrane potential. The alteration of redox status by CBD caused an attempt to rescue mitochondrial functionality through nuclear localization of the GABP transcription factor involved in mitochondria biogenesis. Moreover, CBD treatment caused an increase in autophagic flux, as supported by the increase in Beclin-1 and the ratio of LC3-II/LC3-I. Due to mitochondria functionality alteration, pro-apoptotic proteins were induced without activating apoptotic effectors Caspase-3 or Caspase-7. The study of the transcription factor NRF2 and the ubiquitin-binding protein p62 expression revealed an increase in their levels in CBD-treated cells.

In conclusion, low-dose CBD makes U87MG cells more vulnerable to cytotoxic effects, reducing cell viability and mitochondrial dynamics while increasing autophagic flux and redox systems. This explains the mechanisms by which glioma cells respond to CBD treatment.

These findings highlight the therapeutic potential of CBD, suggesting that modulating NRF2 and autophagy pathways could represent a promising strategy for glioblastoma treatment.”

https://pubmed.ncbi.nlm.nih.gov/39857352/

“Our study demonstrates that low-dose CBD treatment (1 μM) in U87MG glioblastoma cells stimulates the autophagy process, which is essential for mitochondrial renewal, contributing to an increase in mitochondria with altered membrane potential. Moreover, CBD-treated U87MG cells present an abnormal activation of the NRF2 pathway, reducing the expression of antioxidant target genes and consequently altering mitochondrial integrity. These molecular effects suggest that CBD could have therapeutic repercussions or be useful in the development of multi-target agents acting on the NRF2 mitochondrial biogenesis–autophagy axis.”

https://www.mdpi.com/2076-3921/14/1/18

Cannabidiol suppresses proliferation and induces cell death, autophagy and senescence in human cholangiocarcinoma cells via the PI3K/AKT/mTOR pathway

pubmed logo

“Background and aim: Cholangiocarcinoma (CCA) is usually diagnosed at a late stage, leading to treatment failure. Cannabidiol (CBD), exhibits diverse anti-cancer effects in various cancers, offering avenues for improving CCA treatment. This study investigated the effects of CBD on human CCA cells and the underlying mechanisms in vitro and in vivo.

Experimental procedure: The effects of CBD on three CCA cell lines (KKU-213B, KKU-100, KKU-055) were assessed using the SRB assay, clonogenic assay, cell cycle arrest, and 3D holotomography. Morphological changes were examined using transmission electron microscopy, while mitochondrial ROS levels and mitochondrial membrane potential were studied using MitoSOX, JC-1, and DCFH-DA. Cellular senescence induction was evaluated via SA-β-gal staining. Protein associatedwith autophagy and cellular senescence were analyzed using Western blot and/or immunofluorescent assays. A xenograft model demonstrated the anti-tumor activity of CBD and the induction of cellular senescence through immunohistochemistry targeting PCNA, β-gal, and p21.

Results and conclusion: CBD effectively inhibited CCA cell proliferation, suppressed colony formation and induced G0/G1 phase cell cycle arrest. Morphological examination revealed lipid droplets/vesicles in CCA cell lines. CBD induced autophagy by upregulating LC3BII, downregulating p62, and inhibiting the p-PI3K, p-AKT, and p-mTOR pathways. Additionally, CBD disrupted mitochondrial homeostasis by elevating ROS, reducing membrane potential, and induced cellular senescence by increasing the expression of p53 and p21. In-vitro results were confirmed by xenograft models. Overall, CBD suppresses proliferation and induces cell death, autophagy and senescence in CCA cells via the PI3K/AKT/mTOR pathway, which indicates a therapeutic option for CCA treatment.”

https://pubmed.ncbi.nlm.nih.gov/39850601/

“Although CBD has shown anti-tumor activity in various solid tumors, including CCA, its mechanism of action remains poorly understood.”

“The study reported here has shown that CBD has a significant anti-tumor effect on CCA cells through various mechanisms, including the inhibition of cell proliferation both in vitro and in vivo, the reduction of colony formation ability and the induction of multiple cellular processes, notably autophagy, cell cycle arrest, cellular senescence, mitochondrial dysfunction, lipid droplet formation, and ROS overproduction.

The significant findings from our study strongly suggest that CBD, through its targeting of the PI3K/AKT/mTOR pathway, holds great promise as a therapeutic agent for treating CCA and potentially other cancers.”

“Various herbal agents, including CBD, have shown promise for the treatment of CCA.”

https://www.sciencedirect.com/science/article/pii/S2225411024000506?via%3Dihub

Unveiling cellular changes in leukaemia cell lines after cannabidiol treatment through lipidomics

pubmed logo

“The present study was aimed at revealing the metabolic changes that occurred in the cellular lipid pattern of acute and chronic myeloid leukaemia cells following treatment with cannabidiol (CBD).

CBD is a non-psychoactive compound present in Cannabis sativa L., which has shown an antiproliferative action in these type of cancer cells.

CBD treatment reduced cell viability and initiated apoptotic and necrotic processes in both cancer cell lines in a time and dose-dependent manner, showing acute myeloid leukaemia (HL-60) cells greater sensitivity than chronic myeloid leukaemia ones (K-562), without differences in the activation of caspases 3/7. Then, control and treated cells of HL-60 and K-562 cell lines were studied through an untargeted lipidomic approach.

The treatment was carried out with CBD at a concentration of 10 μM for HL-60 cells and 23 µM CBD for K-562 cells for 48 h. After the extraction of the lipid content from cell lysates, the samples were analysed by UHPLC-QTOF-MS/MS both in the positive and the negative ionization modes. The comprehensive characterization of cellular lipids unveiled several classes significantly affected by CBD treatment. Most of the differences correspond to phospholipids, including cardiolipins (CL), phosphatidylcholines (PC) and phosphosphingolipids (SM), and also triacylglycerols (TG), being many TG species increased after CBD treatment in the acute and chronic models, whereas phospholipids were found to be decreased.

The results highlight some important lipid alterations related to CBD treatment, plausibly connected with different metabolic mechanisms involved in the process of cell death by apoptosis in cancer cell lines.”

https://pubmed.ncbi.nlm.nih.gov/39824876/

“Cannabinoids have shown to be effective both as a single agent and in combination with antineoplastic drugs.”

https://www.nature.com/articles/s41598-025-86044-5

Lebanese Cannabis sativa L. extract protects from cisplatin-induced nephrotoxicity in mice by inhibiting podocytes apoptosis

pubmed logo

“Background: Cisplatin is an anti-cancer drug used to treat a plethora of solid tumors. However, it is associated with dose dependent nephrotoxicity limiting its use as anticancer agent.

Objective: The current study aimed to investigate the nephroprotective effect of native Lebanese Cannabis sativa in both in vitro and in vivo mice model of cisplatin-induced nephrotoxicity.

Methods: Podocytes cell viability was assessed using MTS assay with cisplatin (30µM) in presence or absence of Cannabis oil extract (COE) at 0.5, 1 and 2µg/ml for 24h. Acute renal injury was established in adult female C57BL/6 mice with 20mg/kg, i.p. single dose cisplatin. Mice were divided into control group (vehicle), COE group, cisplatin group and cisplatin plus COE (2.5, 5 and 20mg/kg, i.p.). Animal body weight, serum creatinine, blood urea nitrogen (BUN), and proteinuria were measured.

Results: Cell viability assay and western blot analysis revealed that COE prevented apoptosis induced by cisplatin in cultured immortalized rat podocytes. In addition, in vitro scratch assay demonstrated the ability of COE to promote and restore the migratory capacity of podocytes in cisplatin-treated cells. Interestingly, COE treatment improved urinary and serum parameters characterized by a significant decrease in serum creatinine, urea, and proteinuria at various COE doses. Western blot analysis showed that COE inhibited COX-2 protein induction as well as apoptosis marker production (Bax/Bcl2 ratio) in cisplatin-treated mice when compared to mice treated with cisplatin alone.

Conclusion: Collectively, the aforementioned findings indicate that COE could be a promising approach to protect against cisplatin-induced nephrotoxicity.”

https://pubmed.ncbi.nlm.nih.gov/39819647/

“In conclusion, our results corroborated previous findings but on kidney podocytes. We strongly suggest that the Lebanese Cannabis oil extract may be of significant therapeutic benefits against the renal complications of cisplatin. Thus, Lebanese COE produces its renoprotective effects partly through activating antiinflammatory and antiapoptoric mechanisms in podocytes.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-025-00260-4

The Role of Cannabinoids and the Endocannabinoid System in the Treatment and Regulation of Nausea and Vomiting

pubmed logo

“Despite using the recommended anti-emetic treatments, control of nausea and vomiting is still an unmet need for cancer patients undergoing chemotherapy treatment. Few properly controlled clinical trials have evaluated the potential of exogenously administered cannabinoids or manipulations of the endogenous cannabinoid (eCB) system to treat nausea and vomiting. In this chapter, we explore the pre-clinical and human clinical trial evidence for the potential of exogenous cannabinoids and manipulations of the eCB system to reduce nausea and vomiting. Although there are limited high-quality human clinical trials, pre-clinical evidence suggests that cannabinoids and manipulations of the eCB system have anti-nausea/anti-emetic potential. The pre-clinical anti-nausea/anti-emetic evidence highlights the need for further evaluation of cannabinoids and manipulations of eCBs and other fatty acid amides in clinical trials.”

https://pubmed.ncbi.nlm.nih.gov/39739175/

https://link.springer.com/chapter/10.1007/7854_2024_554

The Anticancer Activity of Cannabinol (CBN) and Cannabigerol (CBG) on Acute Myeloid Leukemia Cells

pubmed logo

“Several cannabis plant-derived compounds, especially cannabinoids, exhibit therapeutic potential in numerous diseases and conditions.

In particular, THC and CBD impart palliative, antiemetic, as well as anticancer effects.

The antitumor effects include inhibition of cancerous cell growth and metastasis and induction of cell death, all mediated by cannabinoid interaction with the endocannabinoid system (ECS). However, the exact molecular mechanisms are still poorly understood. In addition, their effects on leukemia have scarcely been investigated.

The current work aimed to assess the antileukemic effects of CBN and CBG on an acute monocytic leukemia cell line, the THP-1. THP-1 cell viability, morphology and cell cycle analyses were performed to determine potential cytotoxic, antiproliferative, and apoptotic effects of CBN and CBG. Western blotting was carried out to measure the expression of the proapoptotic p53.

Both CBN and CBG inhibited cell growth and induced THP-1 cell apoptosis and cell cycle arrest in a dose- and time-dependent manner. CBN and CBG illustrated different dosage effects on THP-1 cells in the MTT assay (CBN > 40 μΜ, CBG > 1 μM) and flow cytometry (CBN > 5 μM, CBG > 40 μM), highlighting the cannabinoids’ antileukemic activity.

Our study hints at a direct correlation between p53 expression and CBG or CBN doses exceeding 50 μM, suggesting potential activation of p53-associated signaling pathways underlying these effects.

Taken together, CBG and CBN exhibited suppressive, cell death-inducing effects on leukemia cells. However, further in-depth research will be needed to explore the molecular mechanisms driving the anticancer effects of CBN and CBG in the leukemia setting.”

https://pubmed.ncbi.nlm.nih.gov/39770061/

https://www.mdpi.com/1420-3049/29/24/5970

Tobacco and marijuana use and their association with serum prostate-specific antigen levels among African American men in Chicago

pubmed logo

“African American (AA) men experience more than twice the prostate cancer mortality as White men yet are under-represented in academic research involving prostate-specific antigen (PSA), a biomarker of prostate cancer aggressiveness.

We examined the impact of self-reported tobacco (cigarette pack-years and current tobacco use including e-cigarettes) and current regular marijuana use on serum PSA level based on clinical laboratory testing among 928 AA men interviewed 2013-2018 in Chicago. We defined outcome of elevated PSA ≥ 4.0 ng/mL for logistic regression models and continuous PSA increases for general linear models. All models were adjusted for age, sociodemographic characteristics, healthcare utilization, body mass index, and self-reported health.

Among 431 AA men age ≥ 55 years, we observed ∼ 5 times the odds of elevated PSA among those with > 1 pack-years of cigarette smoking vs. never-smokers (odds ratio [OR] = 5.09; 95% confidence interval [CI] = 1.57-16.6) and a quarter the odds of elevated PSA among current marijuana users vs. non-users (OR = 0.27; 95% CI = 0.08-0.96). PSA increased on average 1.20 ng/mL among other current tobacco users vs. non-users.

Among older AA men, cigarette smoking history and current tobacco use were positively associated with an increase in PSA levels and current marijuana use were inversely associated with PSA levels.

Future work with studies of diverse patient populations with cancer outcomes are needed to assess whether these behavioral characteristics contribute to racial/ ethnic disparities in prostate cancer outcomes.

Our study provides novel evidence regarding potential differences in PSA levels among older AA men according to behavioral characteristics.”

https://pubmed.ncbi.nlm.nih.gov/33088675/

“Tobacco use was associated with an increase in PSA among older AA men.”

“Marijuana use was associated with a decrease in PSA among older AA men.”

https://www.sciencedirect.com/science/article/pii/S2211335520301339