“Cannabidiol (CBD) can exert neuroprotective effects without being intoxicating, and in combination with Δ9-tetrahydrocannabinol (THC) CBD has shown to protect against THC psychosis. Acute concussion and post-concussion syndrome (PCS) can result in autonomic dysfunction in heart rate variability (HRV), but less information is available on blood pressure variability (BPV). Furthermore, the effects of phytocannabinoids on HRV and BPV in PCS are unknown. The purpose of this study was to observe the influence of daily administration of CBD or a combination of CBD and THC on HRV and BPV parameters in four female PCS participants. Participants completed a seated 5-min rest followed by six breaths-per-minute paced breathing protocol. Data was collected prior to phytocannabinoid intake and continued over 54 to 70 days. High frequency systolic BPV parameter increased every assessment period, unless altered due to external circumstances and symptoms. HRV parameters showed less consistent and varying responses. These results suggest that CBD can help to improve the altered autonomic dysfunction in those with PCS, and that responses to the drug administration was individualized. Double blinded, randomized controlled trials with greater sample sizes are required to better understand the influences of the varying dosages on human physiology and in PCS.”
Category Archives: Cardiovascular Disease
Hempseed (Cannabis sativa) offers effective alternative over statins in ameliorating hypercholesterolemia associated nephropathy
“A direct link between hypercholesterolemia (HC) and renal pathologies has been established. Statins, the drugs of choice for HC management, have been associated with various side effects and toxicities, including nephropathy and other renal insults. Thus, natural dietary products based-alternative strategies for HC and associated pathologies are being considered.
Objectives: Based on the unique nutritional composition and numerous health benefits of Hempseeds (Cannabis sativa), currently the potential anti-inflammatory and redox modulatory effects of hempseeds lipid extract (HEMP) against HC associated renal damage were evaluated and compared with statins (Simvastatin) in HFD induced experimental model of HC in rats.
Results: Not only, HEMP administration improved the lipid profiles and morphological signs of HC, but it also was safe compared to Simvastatin in terms of hepatic and renal function markers. Further, changes in renal histoarchitecture, biochemical markers of oxidative stress, and expression profiles of lipid metabolism and inflammatory pathways (Cox-1/2, PGDS, PGES) revealed that HEMP positively modulating the redox homeostasis activated the resolution pathways against HC associated renal insults.
Conclusion: The outcomes of the current study indicated HEMP’s ameliorative and therapeutic potential against hypercholesterolemia-associated nephropathies and other systemic effects.”
The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases
“The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems.
In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development.
The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development.
The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases.
This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as “C. sativa L.” or “medical cannabis”), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.”
https://www.mdpi.com/1422-0067/22/17/9472
“Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment”
Analysis of Toxicity Effects of Delta-9-Tetrahydrocannabinol on Isolated Rat Heart Mitochondria
“Mitochondria have the main roles in myocardial tissue homeostasis, through providing ATP for the vital enzymes in intermediate metabolism, contractile apparatus and maintaining ion homeostasis. Mitochondria-related cardiotoxicity results from the exposure with illicit drugs have previously reported. These illicit drugs interference with processes of normal mitochondrial homeostasis and lead to mitochondrial dysfunction and mitochondrial-related oxidative stress.
Here, we investigated this hypothesis that delta-9-tetrahydrocannabinol (Delta-9-THC) as a main cannabinoid found in cannabis could directly cause mitochondrial dysfunction.
Our observation showed that THC did not cause a deleterious alteration in mitochondrial functions, ROS production, MMP collapse, mitochondrial swelling, oxidative stress and lipid peroxidation in used concentrations (5-100 µM), even in several tests, toxicity showed a decreasing trend.
Altogether, the results of the current study showed that THC is not directly toxic in isolated cardiac mitochondria, and even may be helpful in reducing mitochondrial toxicity.”
https://pubmed.ncbi.nlm.nih.gov/34431445/
https://www.tandfonline.com/doi/abs/10.1080/15376516.2021.1973168?journalCode=itxm20
Antioxidant and Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides Obtained from Alcalase Protein Hydrolysate Fractions of Hemp ( Cannabis sativa L.) Bran
“Proteins from hemp bran (HPB), a byproduct of the hemp seed food-processing chain, were chemically extracted, hydrolyzed by Alcalase, and separated by membrane ultrafiltration into four fractions (MW <1, 1-3, 3-5, and >5 kDa).
The antioxidant and antihypertensive properties of the initial extract and the fractions were evaluated by in vitro assays for their ability to scavenge radical species, bind with metal ions, reduce ferric ions, and inhibit angiotensin-converting enzyme (ACE) activity.
The hydrolysate was strongly antioxidant and ACE-inhibiting; the most bioactive peptides were further concentrated by ultrafiltration. Of the 239 peptides identified, 47 (12 antioxidant and 35 ACE-inhibitory) exhibited structural features correlated with the specific bioactivity.
These results highlight the promise of hydrolysate and size-based HPB fractions as natural functional ingredients for the food or pharmaceutical industry.”
“In conclusion, this study highlights the potential use of HPB hydrolysate and fractions as multifunctional ingredients for the development of new healthy foods or for the pharmaceutical industry. ”
An overview on plants cannabinoids endorsed with cardiovascular effects
“Nowadays cardiovascular diseases (CVDs) are the major causes for the reduction of the quality of life.
The endocannabinoid system is an attractive therapeutic target for the treatment of cardiovascular disorders due to its involvement in vasomotor control, cardiac contractility, blood pressure and vascular inflammation. Alteration in cannabinoid signalling can be often related to cardiotoxicity, circulatory shock, hypertension, and atherosclerosis.
Plants have been the major sources of medicines until modern eras in which researchers are experiencing a rediscovery of natural compounds as novel therapeutics.
One of the most versatile plant is Cannabis sativa L., containing phytocannabinoids that may play a role in the treatment of CVDs.
The aim of this review is to collect and investigate several less studied plants rich in cannabinoid-like active compounds able to interact with cannabinoid system; these plants may play a pivotal role in the treatment of disorders related to the cardiovascular system.”
https://pubmed.ncbi.nlm.nih.gov/34332376/
“Cannabis sativa L. is the most investigated source of phytocannabinoids. Other plants are a rich source of cannabinoid-like compounds. Cannabinoid-like compounds may interact with cannabinoid system. Most of them may exhibit a protective role on cardiovascular system.”
https://www.sciencedirect.com/science/article/pii/S0753332221007459?via%3Dihub
Cannabis Seed Oil Alleviates Experimental Atherosclerosis by Ameliorating Vascular Inflammation in Apolipoprotein-E-Deficient Mice
“In recent decades, epidemiological, clinical, and experimental studies have demonstrated that a diet with antioxidant or anti-inflammatory function plays a central role in the prevention of atherosclerosis (AS).
The purpose of this study was to explore the effects of Cannabis seed oil (CO) administration on in vitro antioxidant capacity as well as blood lipid profiles, lipid peroxidation, inflammatory response, and endothelial cell integrity. Female ApoE-/- mice were fed a high-cholesterol diet and administrated with CO or phosphate-buffered saline (PBS) and seal oil by gavage for 8 weeks.
The results show that CO administration reduced the levels of serum triglycerides and low-density lipoprotein cholesterol at week 6. Additionally, a decrease in serum tumor necrosis factor α and nitric oxide was also observed. Moreover, results from CD31 staining and scanning electron microscopy revealed that CO treatment alleviated the endothelial cell damage and lipid deposition induced by a high-cholesterol diet. The ratio of lesion area to the total aorta area was 19.57% for the CO group, which was lower than the PBS control group (24.67%).
Collectively, CO exerted anti-atherosclerotic effects by modulating serum lipid profiles and inflammatory responses and improving endothelial cell integrity and arterial lipid deposition. The results provide a promising preventive strategy for the early progression of AS.”
Association Between Marijuana Use and Cardiovascular Disease in US Adults
“This study aims to add evidence regarding the impact marijuana use has on the prevalence of cardiovascular disease.
Our study lends support to the notion that marijuana use does not have an association with cardiovascular disease.
Although previous literature has shown that marijuana use has a negative impact on cardiovascular health, our study suggests that users and non-users of marijuana did not have an association with the prevalence of cardiovascular disease.”
https://pubmed.ncbi.nlm.nih.gov/33409101/
“The primary aim of this study was to evaluate the relationship between marijuana use and cardiovascular disease. After controlling for several confounding variables, we found that there was a decrease in the prevalence of cardiovascular events with marijuana use. In conclusion, our study found that there is no link to marijuana use and an increase in cardiovascular disease. Furthermore, there may be a link between marijuana use and lowered risk of cardiovascular disease”
Therapeutic Applications of Cannabinoids in Cardiomyopathy and Heart Failure
“A large number of cannabinoids have been discovered that could play a role in mitigating cardiac affections. However, none of them has been as widely studied as cannabidiol (CBD), most likely because, individually, the others offer only partial effects or can activate potential harmful pathways.
In this regard, CBD has proven to be of great value as a cardioprotective agent since it is a potent antioxidant and anti-inflammatory molecule. Thus, we conducted a review to condensate the currently available knowledge on CBD as a therapy for different experimental models of cardiomyopathies and heart failure to detect the molecular pathways involved in cardiac protection.
CBD therapy can greatly limit the production of oxygen/nitrogen reactive species, thereby limiting cellular damage, protecting mitochondria, avoiding caspase activation, and regulating ionic homeostasis. Hence, it can affect myocardial contraction by restricting the activation of inflammatory pathways and cytokine secretion, lowering tissular infiltration by immune cells, and reducing the area of infarct and fibrosis formation. These effects are mediated by the activation or inhibition of different receptors and target molecules of the endocannabinoid system.
In the final part of this review, we explore the current state of CBD in clinical trials as a treatment for cardiovascular diseases and provide evidence of its potential benefits in humans.”
Protective Effects of ( E)-β-Caryophyllene (BCP) in Chronic Inflammation
“(E)-β-caryophyllene (BCP) is a bicyclic sesquiterpene widely distributed in the plant kingdom, where it contributes a unique aroma to essential oils and has a pivotal role in the survival and evolution of higher plants.
Recent studies provided evidence for protective roles of BCP in animal cells, highlighting its possible use as a novel therapeutic tool.
Experimental results show the ability of BCP to reduce pro-inflammatory mediators such as tumor necrosis factor-alfa (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), thus ameliorating chronic pathologies characterized by inflammation and oxidative stress, in particular metabolic and neurological diseases.
Through the binding to CB2 cannabinoid receptors and the interaction with members of the family of peroxisome proliferator-activated receptors (PPARs), BCP shows beneficial effects on obesity, non-alcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) liver diseases, diabetes, cardiovascular diseases, pain and other nervous system disorders.
This review describes the current knowledge on the biosynthesis and natural sources of BCP, and reviews its role and mechanisms of action in different inflammation-related metabolic and neurologic disorders.”
https://pubmed.ncbi.nlm.nih.gov/33114564/
https://www.mdpi.com/2072-6643/12/11/3273
“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.” http://www.ncbi.nlm.nih.gov/pubmed/23138934