Cannabidiol exhibits potent anti-cancer activity against gemcitabine-resistant cholangiocarcinoma via ER-stress induction in vitro and in vivo

pubmed logo

“Background: Failure of treatment with gemcitabine in most cholangiocarcinoma (CCA) patients is due to drug resistance. The therapeutic potential of natural plant secondary compounds with minimal toxicity, such as cannabidiol (CBD), is a promising line of investigation in gemcitabine-resistant CCA. We aim to investigate the effects of CBD on gemcitabine-resistant CCA (KKU-213BGemR) cells in vitro and in vivo.

Materials: In vitro, cell proliferation, colony formation, apoptosis and cell cycle arrest were assessed using MTT assay, clonogenicity assay and flow cytometry. The effect of CBD on ROS production was evaluated using the DCFH-DA fluorescent probe. The mechanism exerted by CBD on ER stress-associated apoptosis was investigated by western blot analysis. A gemcitabine-resistant CCA xenograft model was also used and the expression of PCNA and CHOP were evaluated by immunohistochemical analysis.

Results: The IC50 values of CBD for KKU-213BGemR cells ranged from 19.66 to 21.05 µM. For a non-cancerous immortalized fibroblast cell line, relevant values were 18.29 to 19.21 µM. CBD suppressed colony formation by KKU-213BGemR cells in a dose-dependent manner in the range of 10 to 30 µM. CBD at 30 µM significantly increased apoptosis at early (16.37%) (P = 0.0024) and late (1.8%) stages (P < 0.0001), for a total of 18.17% apoptosis (P = 0.0017), in part by increasing ROS production (P < 0.0001). Multiphase cell cycle arrest significantly increased at G0/G1 with CBD 10 and 20 µM (P = 0.004 and P = 0.017), and at G2/M with CBD 30 µM (P = 0.005). CBD treatment resulted in increased expression of ER stress-associated apoptosis proteins, including p-PERK, BiP, ATF4, CHOP, BAX, and cytochrome c. In xenografted mouse, CBD significantly suppressed tumors at 10 and 40 mg/kg·Bw (P = 0.0007 and P = 0.0278, respectively), which was supported by an increase in CHOP, but a decrease in PCNA expression in tumor tissues (P < 0.0001).

Conclusion: The results suggest that CBD exhibits potent anti-cancer activity against gemcitabine-resistant CCA in vitro and in vivo, in part via ER stress-mediated mechanisms. These results indicate that clinical explorative use of CBD on gemcitabine-resistant CCA patients is warranted.”

https://pubmed.ncbi.nlm.nih.gov/39215312/

“This study suggests that CBD may be a valuable therapeutic option for gemcitabine-resistant CCA, as it inhibits the growth of these resistant cells, induces apoptosis and disrupts the cell cycle. These results are in line with established oncology research and emphasize the potential of CBD as a multifaceted therapeutic agent against gemcitabine resistance in CCA.”

https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-024-04610-2

Antitumor Effects of Delta (9)-Tetrahydrocannabinol and Cannabinol on Cholangiocarcinoma Cells and Xenograft Mouse Models

logo

“Cholangiocarcinoma (CCA) is a very aggressive tumor. The development of a new therapeutic drug for CCA is required.

This study aims to evaluate the antitumor effect of ∆9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana (Cannabis sativa), and cannabinol (CBN), a minor, low-psychoactive cannabinoid, on CCA cells and xenograft mice.

THC and CBN were isolated, and their identities were confirmed by comparing 1H- and 13C-NMR spectra and mass spectra with a database. Cell proliferation, cell migration, and cell apoptosis assays were performed in HuCCT1 human CCA cells treated with THC or CBN. The phosphorylation of signaling molecules in HuCCT1 cells was detected. To determine the effects of THC and CBN in an animal model, HuCCT1 cells were inoculated subcutaneously into nude mice. After the tumors reached an appropriate size, the mice were treated with THC or CBN for 21 days. Tumor volumes were monitored and calculated. The 1H- and 13C-NMR data of THC and CBN were almost identical to those reported in the literature.

THC and CBN significantly inhibited cell proliferation and migration and induced apoptosis in HuCCT1 cells. The phosphorylation of AKT, GSK-3α/β, and ERK1/2 decreased in HuCCT1 cells treated with THC or CBN. CCA xenograft mice treated with THC showed significantly slower tumor progression and smaller tumor volumes than control mice. THC and CBN induced apoptosis in CCA by inhibiting the AKT and MAPK pathways.

These findings provide a strong rationale for THC and CBN as therapeutic options for CCA.”

https://pubmed.ncbi.nlm.nih.gov/36452140/

“THC and CBN induced apoptosis in CCA by inhibiting the AKT and MAPK pathways, leading to a decrease in cell proliferation in vitro and tumor volume in vivo. In addition, in this animal model, THC appeared to be superior in potency to CBN. These findings provide a strong rationale for THC and CBN as therapeutic options for CCA.”

https://www.hindawi.com/journals/ecam/2022/6477132/

Cannabidiol and Cannabigerol Inhibit Cholangiocarcinoma Growth In Vitro via Divergent Cell Death Pathways

biomolecules-logo

“Cholangiocarcinoma (CCA) is a rare and highly lethal disease with few effective treatment options.

Cannabinoids, cannabidiol (CBD) and cannabigerol (CBG) are non-psychedelic components extracted from cannabis. These non-psychoactive compounds have shown anti-proliferative potential in other tumor models; however, the efficacy of CBD and CBG in CCA is unknown. Furthermore, two cell death pathways are implicated with CBD resulting in autophagic degeneration and CBG in apoptosis. HuCC-T1 cells, Mz-ChA-1 cells (CCA cell lines) and H69 cells (immortalized cholangiocytes), were treated with CBD and CBG for 24 to 48 h.

The influence of these cannabinoids on proliferation was assessed via MTT assay. Apoptosis and cell cycle were evaluated via Annexin-V apoptosis assay and propidium iodide, respectively. The expression of proliferation biomarker Ki-67, apoptosis biomarker BAX, and autophagic flux biomarkers LC3b and LAMP1 were evaluated via immunofluorescence. Cell migration and invasion were evaluated via wound healing assay and trans-well migration invasion assays, respectively. The colony formation was evaluated via colony formation assay. In addition, the expression of autophagy gene LC3b and apoptosis genes BAX, Bcl-2, and cleaved caspase-3 were evaluated via Western blot.

CBD and CBG are non-selective anti-proliferative agents yielding similar growth curves in CCA; both cannabinoids are effective, yet CBG is more active at lower doses. Low doses of CBD and CBG enhanced immortalized cholangiocyte activity. The reduction in proliferation begins immediately and occurs maximally within 24 h of treatment. Moreover, a significant increase in the late-stage apoptosis and a reduction in the number of cells in S stage of the cell cycle indicates both CBD and CBG treatment could promote apoptosis and inhibit mitosis in CCA cells. The fluorescent expression of BAX and LC3b was significantly enhanced with CBD treatment when compared to control. LAMP1 and LC3b colocalization could also be observed with CBD and CBG treatment indicating changes in autophagic flux.

A significant inhibition of migration, invasion and colony formation ability was shown in both CBD and CBG treatment in CCA. Western blot showed an overall decrease in the ratio of anti-apoptotic protein Bcl-2 with respect to pro-apoptotic protein BAX with CBG treatment. Furthermore, CBD treatment enhanced the expression of Type II cell death (autophagic degeneration) protein LC3b, which was reduced in CBG-treated CCA cells. Meanwhile, CBG treatment upregulated Type I cell death (programmed apoptosis) protein cleaved caspase-3.

CBD and CBG are effective anti-cancer agents against CCA, capable of inhibiting the classic hallmarks of cancer, with a divergent mechanism of action (Type II or Type I respectively) in inducing these effects.”

https://pubmed.ncbi.nlm.nih.gov/35740979/

https://www.mdpi.com/2218-273X/12/6/854


The Effectiveness and Safety of Medical Cannabis for Treating Cancer Related Symptoms in Oncology Patients

Frontiers in Pain Research (@FrontPain) / Twitter

“The use of medical cannabis (MC) to treat cancer-related symptoms is rising. However, there is a lack of long-term trials to assess the benefits and safety of MC treatment in this population. In this work, we followed up prospectively and longitudinally on the effectiveness and safety of MC treatment.

Oncology patients reported on multiple symptoms before and after MC treatment initiation at one-, three-, and 6-month follow-ups. Oncologists reported on the patients’ disease characteristics. Intention-to-treat models were used to assess changes in outcomes from baseline. MC treatment was initiated by 324 patients and 212, 158 and 126 reported at follow-ups.

Most outcome measures improved significantly during MC treatment for most patients (p < 0.005). Specifically, at 6 months, total cancer symptoms burden declined from baseline by a median of 18%, from 122 (82–157) at baseline to 89 (45–138) at endpoint (−18.98; 95%CI= −26.95 to −11.00; p < 0.001). Reported adverse effects were common but mostly non-serious and remained stable during MC treatment.

The results of this study suggest that MC treatment is generally safe for oncology patients and can potentially reduce the burden of associated symptoms with no serious MC-related adverse effects.

The main finding of the current study is that most cancer comorbid symptoms improved significantly during 6 months of MC treatment.

Additionally, we found that MC treatment in cancer patients was well tolerated and safe.”

https://pubmed.ncbi.nlm.nih.gov/35669038/

https://www.frontiersin.org/articles/10.3389/fpain.2022.861037/full?utm_source=fweb

“Cancer Pain Treatment Using Marijuana Safe and Effective, Large Study Finds”

https://www.newsweek.com/cannabis-medicinal-cancer-patient-symptoms-pain-relief-1711981


The Endocannabinoid System as a Pharmacological Target for New Cancer Therapies

“Despite the long history of cannabinoid use for medicinal and ritual purposes, an endogenous system of cannabinoid-controlled receptors, as well as their ligands and the enzymes that synthesise and degrade them, was only discovered in the 1990s. Since then, the endocannabinoid system has attracted widespread scientific interest regarding new pharmacological targets in cancer treatment among other reasons.

Meanwhile, extensive preclinical studies have shown that cannabinoids have an inhibitory effect on tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition (EMT) and induce tumour cell apoptosis and autophagy as well as immune response. Appropriate cannabinoid compounds could moreover be useful for cancer patients as potential combination partners with other chemotherapeutic agents to increase their efficacy while reducing unwanted side effects.

In addition to the direct activation of cannabinoid receptors through the exogenous application of corresponding agonists, another strategy is to activate these receptors by increasing the endocannabinoid levels at the corresponding pathological hotspots. Indeed, a number of studies accordingly showed an inhibitory effect of blockers of the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on tumour development and spread.

This review summarises the relevant preclinical studies with FAAH and MAGL inhibitors compared to studies with cannabinoids and provides an overview of the regulation of the endocannabinoid system in cancer.”

https://pubmed.ncbi.nlm.nih.gov/34830856/

“Cannabinoids have been shown to suppress tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition and to induce tumour cell apoptosis, autophagy and immune response. This review focuses on the current status of investigations on the impact of inhibitors of endocannabinoid-degrading enzymes on tumour growth and spread in preclinical oncology research.”

https://www.mdpi.com/2072-6694/13/22/5701


Plant-derived cannabinoids as anticancer agents

“Substantial preclinical evidence demonstrates the antiproliferative, cytotoxic, and antimetastatic properties of plant-derived cannabinoids (phytocannabinoids) such as cannabidiol and tetrahydrocannabinol. The cumulative body of research into the intracellular mechanisms and phenotypic effects of these compounds supports a logical, judicious progression to large-scale phase II/III clinical trials in certain cancer types to truly assess the efficacy of phytocannabinoids as anticancer agents.”

https://pubmed.ncbi.nlm.nih.gov/35260379/

Cannabinoids as anticancer drugs: current status of preclinical research

“Drugs that target the endocannabinoid system are of interest as pharmacological options to combat cancer and to improve the life quality of cancer patients. From this perspective, cannabinoid compounds have been successfully tested as a systemic therapeutic option in a number of preclinical models over the past decades. As a result of these efforts, a large body of data suggests that the anticancer effects of cannabinoids are exerted at multiple levels of tumour progression via different signal transduction mechanisms. Accordingly, there is considerable evidence for cannabinoid-mediated inhibition of tumour cell proliferation, tumour invasion and metastasis, angiogenesis and chemoresistance, as well as induction of apoptosis and autophagy. Further studies showed that cannabinoids could be potential combination partners for established chemotherapeutic agents or other therapeutic interventions in cancer treatment. Research in recent years has yielded several compounds that exert promising effects on tumour cells and tissues in addition to the psychoactive Δ9-tetrahydrocannabinol, such as the non-psychoactive phytocannabinoid cannabidiol and inhibitors of endocannabinoid degradation. This review provides an up-to-date overview of the potential of cannabinoids as inhibitors of tumour growth and spread as demonstrated in preclinical studies.”

https://pubmed.ncbi.nlm.nih.gov/35277658/

Cannabidiol and Other Phytocannabinoids as Cancer Therapeutics

“Preclinical models provided ample evidence that cannabinoids are cytotoxic against cancer cells. Among the best studied phytocannabinoids, cannabidiol (CBD) is most promising for the treatment of cancer as it lacks the psychotomimetic properties of delta-9-tetrahydrocannabinol (THC). In vitro studies and animal experiments point to a concentration- (dose-)dependent anticancer effect. The effectiveness of pure compounds versus extracts is the subject of an ongoing debate. Actual results demonstrate that CBD-rich hemp extracts must be distinguished from THC-rich cannabis preparations. Whereas pure CBD was superior to CBD-rich extracts in most in vitro experiments, the opposite was observed for pure THC and THC-rich extracts, although exceptions were noted. The cytotoxic effects of CBD, THC and extracts seem to depend not only on the nature of cannabinoids and the presence of other phytochemicals but also largely on the nature of cell lines and test conditions. Neither CBD nor THC are universally efficacious in reducing cancer cell viability. The combination of pure cannabinoids may have advantages over single agents, although the optimal ratio seems to depend on the nature of cancer cells; the existence of a ‘one size fits all’ ratio is very unlikely. As cannabinoids interfere with the endocannabinoid system (ECS), a better understanding of the circadian rhythmicity of the ECS, particularly endocannabinoids and receptors, as well as of the rhythmicity of biological processes related to the growth of cancer cells, could enhance the efficacy of a therapy with cannabinoids by optimization of the timing of the administration, as has already been reported for some of the canonical chemotherapeutics. Theoretically, a CBD dose administered at noon could increase the peak of anandamide and therefore the effects triggered by this agent. Despite the abundance of preclinical articles published over the last 2 decades, well-designed controlled clinical trials on CBD in cancer are still missing. The number of observations in cancer patients, paired with the anticancer activity repeatedly reported in preclinical in vitro and in vivo studies warrants serious scientific exploration moving forward.”

https://pubmed.ncbi.nlm.nih.gov/35244889/

Cannabis as a potential compound against various malignancies, legal aspects, advancement by exploiting nanotechnology and clinical trials

“Various preclinical and clinical studies exhibited the potential of cannabis against various diseases, including cancer and related pain. Subsequently, many efforts have been made to establish and develop cannabis-related products and make them available as prescription products. Moreover, FDA has already approved some cannabis-related products, and more advancement in this aspect is still going on. However, the approved product of cannabis is in oral dosage form, which exerts various limitations to achieve maximum therapeutic effects. A considerable translation is on a hike to improve bioavailability, and ultimately, the therapeutic efficacy of cannabis by the employment of nanotechnology. Besides the well-known psychotropic effects of cannabis upon the use at high doses, literature has also shown the importance of cannabis and its constituents in minimising the lethality of cancer in the preclinical models. This review discusses the history of cannabis, its legal aspect, safety profile, the mechanism by which cannabis combats with cancer, and the advancement of clinical therapy by exploiting nanotechnology. A brief discussion related to the role of cannabinoid in various cancers has also been incorporated. Lastly, the information regarding completed and ongoing trials have also been elaborated.”

https://pubmed.ncbi.nlm.nih.gov/35321629/

The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases

ijms-logo“The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems.

In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development.

The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development.

The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases.

This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as “C. sativa L.” or “medical cannabis”), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.”

https://pubmed.ncbi.nlm.nih.gov/34502379/

https://www.mdpi.com/1422-0067/22/17/9472

 

“Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830475/