Therapeutic applications of cannabinoids.

Chemico-Biological Interactions

“The psychoactive properties of cannabinoids are well known and there has been a continuous controversy regarding the usage of these compounds for therapeutic purposes all over the world. Their use for medical and research purposes are restricted in various countries. However, their utility as medications should not be overshadowed by their negative physiological activities.

This review article is focused on the therapeutic potential and applications of phytocannabinoids and endocannabinoids. It highlights their mode of action, overall effects on physiology, various in vitro and in vivo studies that have been done so far and the extent to which these compounds can be useful in different disease conditions such as cancer, Alzheimer’s disease, multiple sclerosis, pain, inflammation, glaucoma and many others.

Thus, this work is an attempt to make the readers understand the positive implications of these compounds and indicates the significant developments that can occur upon utilizing cannabinoids as therapeutic agents.”  https://www.ncbi.nlm.nih.gov/pubmed/30040916

“Cannabinoids can be used as therapeutic agents.”   https://www.sciencedirect.com/science/article/pii/S0009279718307373?via%3Dihub

Preliminary evaluation of the efficacy, safety, and costs associated with the treatment of chronic pain with medical cannabis.

College of Psychiatric and Neurologic Pharmacists

“Medical cannabis (MC) is commonly claimed to be an effective treatment for chronic or refractory pain. With interest in MC in the United States growing, as evidenced by the 29 states and 3 US districts that now have public MC programs, the need for clinical evidence supporting this claim has never been greater.

METHODS:

This was a retrospective, mirror-image study that investigated MC’s effectiveness in patients suffering from chronic pain associated with qualifying conditions for MC in New York State. The primary outcome was to compare European Quality of Life 5 Dimension Questionnaire (EQ-5D) and Pain Quality Assessment Scale (PQAS) scores at baseline and 3 months post-therapy. The secondary outcomes included comparisons of monthly analgesic prescription costs and opioid consumption pre- and post-therapy. Tolerability was assessed by side effect incidence.

RESULTS:

This investigation included 29 subjects. Quality of life and pain improved, measured by change in EQ-5D (Pre 36 - Post 64, P < .0001) and change in PQAS paroxysmal (Pre 6.76 - Post 2.04, P < .0001), surface (Pre 4.20 - Post 1.30, P < .0001), deep (Pre 5.87 - Post 2.03, P < .0001), unpleasant (Pre “miserable” - Post “annoying”, P < .0001). Adverse effects were reported in 10% of subjects.

DISCUSSION:

After 3 months treatment, MC improved quality of life, reduced pain and opioid use, and lead to cost savings. Large randomized clinical trials are warranted to further evaluate the role of MC in the treatment of chronic pain.”

https://www.ncbi.nlm.nih.gov/pubmed/29955555

http://mhc.cpnp.org/doi/10.9740/mhc.2018.05.110

Role of the cannabinoid signaling in the brain orexin- and ghrelin-induced visceral antinociception in conscious rats.

Journal of Pharmacological Sciences

“We hypothesized that the cannabinoid (CB) system may mediate the brain orexin- or ghrelin-induced visceral antinociception. Intraperitoneal injection of either CB1/2 agonist, WIN 55212 or O-Arachidonoyl ethanolamine increased the threshold volume of colonic distension-induced abdominal withdrawal reflex in rats, suggesting CB could induce visceral antinociception. Pretreatment with either the CB1 or CB2 antagonist potently blocked the centrally injected orexin-A-induced antinociceptive action against colonic distension while CB2 but not CB1 antagonist blocked the brain ghrelin-induced visceral antinociception. These results suggest that the cannabinoid signaling may be involved in the central orexin- or ghrelin-induced antinociceptive action in a different mechanistic manner.”

Medical Cannabis in Patients with Chronic Pain: Effect on Pain Relief, Pain Disability, and Psychological aspects. A Prospective Non randomized Single Arm Clinical Trial.

 Image result for clinical therapeutics journal

“There is an increasing interest in the medical use of cannabis, particularly in the treatment of chronic pain.

OBJECTIVES:

The aim is to evaluate the effects of cannabis use and the associated benefits reported by patients with various chronic pain diagnoses.

RESULTS:

Pain intensity records a statistically significant reduction from Baseline to 12 months follow up (X² 61.375; P<0,001); the im- provements from Baseline to 12 months follow up are also recorded in pain disability (X² 39.423; P<0,001) and in anxiety and depression symptoms (X²30.362; P<0,001; X²27.786; P<0,001).

CONCLUSIONS:

Our study suggest that Cannabis therapy, as an adjun- ct a traditional analgesic therapy, can be an efficacious tool to make more effective the management of chronic pain and its consequences on functional and psychological dimension. Further randomized, controlled trials are needed to confirm our conclusions.”

https://www.ncbi.nlm.nih.gov/pubmed/29938740

The relationship of endocannabinoidome lipid mediators with pain and psychological stress in women with fibromyalgia – a case control study.

“Characterized by chronic widespread pain, generalized hyperalgesia, and psychological stress fibromyalgia (FM) is difficult to diagnose and lacks effective treatments.

The endocannabinoids – arachidonoylethanolamide (AEA), 2-arachidonoylglycerol (2-AG), and the related oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and stearoylethanolamide (SEA) – are endogenous lipid mediators with analgesic and anti-inflammatory characteristics, in company with psychological modulating properties (e.g., stress and anxiety), and are included in a new emerging “ome”, the endocannabinoidome.

This case -control study compared the concentration differences of AEA, OEA, PEA, SEA, and 2-AG in 104 women with FM and 116 healthy controls (CON). All participants OEArated their pain, anxiety, depression, and current health status. The relationships between the lipid concentrations and the clinical assessments were investigated using powerful multivariate data analysis and traditional bivariate statistics. The concentrations of OEA, PEA, SEA, and 2-AG were significantly higher in FM than in CON; significance remained for OEA and SEA after controlling for BMI and age. 2-AG correlated positively with FM duration and BMI, and to some extent negatively with pain, anxiety, depression, and health status. In FM, AEA correlated positively with depression ratings.

The elevated circulating levels of endocannabinoidome lipids suggest that these lipids play a role in the complex pathophysiology of FM and might be signs of ongoing low-grade inflammation in FM. Although the investigated lipids are significantly altered in FM their biological roles are uncertain with respect to the clinical manifestations of FM. Thus, plasma lipids alone are not good biomarkers for FM.

PERSPECTIVE:

This study reports about elevated plasma levels of endocannabinoidome lipid mediators in FM. The lipids suitability to work as biomarkers for FM in the clinic were low, however their altered levels indicate that a metabolic asymmetry is ongoing in FM, which could serve as basis during explorative FM pain management.”

https://www.ncbi.nlm.nih.gov/pubmed/29885369

https://www.jpain.org/article/S1526-5900(18)30197-4/fulltext

Cannabinoid receptor type 1 in the brain regulates the affective component of visceral pain in mice.

 Cover image

“Endocannabinoids acting through cannabinoid receptor type 1 (CB1) are major modulators of peripheral somatic and visceral nociception. Although only partially studied, some evidence suggests a particular role of CB1 within the brain in nociceptive processes.

As the endocannabinoid system regulates affect and emotional behaviors, we hypothesized that cerebral CB1 influences affective processing of visceral pain-related behaviors in laboratory animals.

To study nocifensive responses modulated by supraspinal CB1, we used conditional knock-out mice lacking CB1 either in cortical glutamatergic neurons (Glu-CB1-KO), or in forebrain GABAergic neurons (GABA-CB1-KO), or in principle neurons of the forebrain (CaMK-CB1-KO). These mutant mice and mice treated with the CB1 antagonist SR141716 were tested for different pain-related behaviors. In an acetic acid-induced abdominal constriction test, supraspinal CB1 deletions did not affect nocifensive responses. In the cerulein-model of acute pancreatitis, mechanical allodynia or hyperalgesia were not changed, but Glu-CB1- and CaMK-CB1-KO mice showed significantly increased facial grimacing scores indicating increased affective responses to this noxious visceral stimulus. Similarly, these brain-specific CB1 KO mice also showed significantly changed thermal nociception in a hot-plate test.

These results reveal a novel, and important role of CB1 expressed by cortical glutamatergic neurons in the affective component of visceral nociception.”

https://www.ncbi.nlm.nih.gov/pubmed/29885522

[Cannabinoids in pain medicine]

Der Schmerz

“The endocannabinoid system (ECS) controls a large number of vital functions.

Suboptimal tone of the ECS in certain regions of the nervous system may be associated with disorders that are also associated with pain.

Pain and inflammation processes can be modulated by the exogenous supply of cannabinoids.

Low-to-moderate pain-relieving effects and in individual cases large pain-relieving effects were observed in randomized, controlled studies of various types of chronic pain. People with chronic neuropathic pain and stress symptoms seem to particularly benefit.

The therapeutic range of cannabinoids is small; often small doses are sufficient for clinically significant effects. The “Cannabis-als-Medizin-Gesetz” (cannabis as medicine law) allows the prescription of cannabis preparations under certain conditions.

Available data indicate good long-term efficacy and tolerability. However, there is little systematic long-term experience from clinical studies.”

https://www.ncbi.nlm.nih.gov/pubmed/29881935

https://link.springer.com/article/10.1007%2Fs00482-018-0299-1

Ventilatory-depressant effects of opioids alone and in combination with cannabinoids in rhesus monkeys.

 Cover image

“Pain is a serious health problem that is commonly treated with opioids, although the doses of opioids needed to treat pain are often similar to those that decrease respiration. Combining opioids with drugs that relieve pain through non-opioid mechanisms can decrease the doses of opioids needed for analgesia, resulting in an improved therapeutic window, but only if the doses of opioids that decrease respiration are not similarly decreased. Using small doses of opioids to treat pain has the potential to reduce the number of overdoses and deaths.

This study investigated whether the cannabinoid receptor agonists Δ9-tetrahydrocannabinol (Δ9-THC) and CP 55,940 modify the ventilatory-depressant effects of morphine and fentanyl in three monkeys.

In summary, cannabinoid receptor agonists, which increase the potency of opioids to produce antinociception, did not increase their potency to depress ventilation. Thus, the therapeutic window is greater for opioids when they are combined with cannabinoid receptor agonists, indicating a possible advantage for these drug mixtures in treating pain.”

https://www.ncbi.nlm.nih.gov/pubmed/29807027

https://www.sciencedirect.com/science/article/pii/S0014299918303108

Patterns of medicinal cannabis use, strain analysis, and substitution effect among patients with migraine, headache, arthritis, and chronic pain in a medicinal cannabis cohort.

The Journal of Headache and Pain Cover Image

“Medicinal cannabis registries typically report pain as the most common reason for use. It would be clinically useful to identify patterns of cannabis treatment in migraine and headache, as compared to arthritis and chronic pain, and to analyze preferred cannabis strains, biochemical profiles, and prescription medication substitutions with cannabis.

RESULTS:

Of 2032 patients, 21 illnesses were treated with cannabis. Pain syndromes accounted for 42.4% (n = 861) overall; chronic pain 29.4% (n = 598;), arthritis 9.3% (n = 188), and headache 3.7% (n = 75;). Across all 21 illnesses, headache was a symptom treated with cannabis in 24.9% (n = 505). These patients were given the ID Migraine™ questionnaire, with 68% (n = 343) giving 3 “Yes” responses, 20% (n = 102) giving 2 “Yes” responses (97% and 93% probability of migraine, respectively). Therefore, 88% (n = 445) of headache patients were treating probable migraine with cannabis. Hybrid strains were most preferred across all pain subtypes, with “OG Shark” the most preferred strain in the ID Migraine™ and headache groups. Many pain patients substituted prescription medications with cannabis (41.2-59.5%), most commonly opiates/opioids (40.5-72.8%). Prescription substitution in headache patients included opiates/opioids (43.4%), anti-depressant/anti-anxiety (39%), NSAIDs (21%), triptans (8.1%), anti-convulsants (7.7%), muscle relaxers (7%), ergots (0.4%).

CONCLUSIONS:

Chronic pain was the most common reason for cannabis use, consistent with most registries. The majority of headache patients treating with cannabis were positive for migraine. Hybrid strains were preferred in ID Migraine™, headache, and most pain groups, with “OG Shark”, a high THC (Δ9-tetrahydrocannabinol)/THCA (tetrahydrocannabinolic acid), low CBD (cannabidiol)/CBDA (cannabidiolic acid), strain with predominant terpenes β-caryophyllene and β-myrcene, most preferred in the headache and ID Migraine™ groups. This could reflect the potent analgesic, anti-inflammatory, and anti-emetic properties of THC, with anti-inflammatory and analgesic properties of β-caryophyllene and β-myrcene. Opiates/opioids were most commonly substituted with cannabis. Prospective studies are needed, but results may provide early insight into optimizing crossbred cannabis strains, synergistic biochemical profiles, dosing, and patterns of use in the treatment of headache, migraine, and chronic pain syndromes.”

Self-initiated use of topical cannabidiol oil for epidermolysis bullosa.

 Publication cover image

“Epidermolysis bullosa is a rare blistering skin disorder that is challenging to manage because skin fragility and repeated wound healing cause itching, pain, limited mobility, and recurrent infections.

Cannabidiol, an active cannabinoid found in cannabis, is postulated to have antiinflammatory and analgesic effects.

We report 3 cases of self-initiated topical cannabidiol use in patients with epidermolysis bullosa in an observational study.

One patient was weaned completely off oral opioid analgesics. All 3 reported faster wound healing, less blistering, and amelioration of pain with cannabidiol use.

Although these results demonstrate promise, further randomized, double-blind clinical trials are necessary to provide scientific evidence of our observed benefits of cannabidiol for the treatment of epidermolysis bullosa.”

https://www.ncbi.nlm.nih.gov/pubmed/29786144

https://onlinelibrary.wiley.com/doi/abs/10.1111/pde.13545