Cannabinoids as a Natural Alternative for the Management of Neuropathic Pain: A Systematic Review of Randomized Placebo-Controlled Trials

“Dysfunction or damage to the nervous system may develop into and result in a chronic pain condition known as neuropathic pain. Neuropathic pain is defined as the structural and functional alteration of the somatosensory component of the nervous system. The treatment of neuropathic pain is a complex endeavor, which often requires specialist care and intensive drug therapy. Recently, cannabinoids have emerged as an alternative and natural option for the treatment of chronic pain, with tetrahydrocannabinol (THC) and cannabidiol (CBD) being the most extensively studied neuroactive components. The therapeutic potential of cannabis remains largely underexplored, primarily due to its social stigma and the restrictions that are in place on its cultivation. The primary aim of this systematic review was to explore the therapeutic value of cannabinoids in the management of chronic pain and thus achieve an improved quality of life for those patients.

A systematic review of the literature published over the last two decades was performed using the following databases: PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Turning research into practice (Trip), and Google Scholar. Studies that were completed and published between January 01, 2000 and August 31, 2024, in English language, were extracted and appraised. A combination of keywords and Boolean operators Cannabis OR Chronic Pain OR End of life OR Pain Management AND Drug therapy was employed for data extraction. The Cochrane risk-of-bias tool for randomized trials (RoB 2) was used for risk-of-bias assessment. The initial search resulted in 125282 articles; 86,781 of the articles were identified as duplicates and were removed from the primary analysis, and 38,501 abstracts were thus screened. Abstracts, case studies, reports, editorials, viewpoints, cross-sectional studies, cohort studies, case-control studies, case series, and letters to the editor/correspondence manuscripts (n =38,492) were furthermore excluded. Nine full-text articles were critically assessed and tested against the inclusion and exclusion criteria, and a further four articles were excluded with a total of five placebo-controlled randomized control studies being ultimately included in the final systematic review.

Compared to placebo, cannabinoids provided significant relief from chronic pain (33% vs 15%) as measured by the visual analog scale. The transdermal application of CBD led to a more pronounced reduction in sharp pain, according to the neuropathic pain scale. Minimal to no side effects were recorded, further highlighting the potential benefits of cannabinoids. 

The potential benefit of cannabinoids is that they are naturally derived drugs that have already been shown to have the potential to effectively decrease chronic pain with minimal side effects as compared to the standard drugs being used. The ability of cannabinoids to provide pain relief with minimal side effects and concurrently be a naturally derived product may potentially be a life-changing alternative that the pharmaceutical market is in dire need of.”

https://www.cureus.com/articles/297124-cannabinoids-as-a-natural-alternative-for-the-management-of-neuropathic-pain-a-systematic-review-of-randomized-placebo-controlled-trials#!/

The endocannabinoid system as a therapeutic target in neuropathic pain: a review

pubmed logo

“Introduction: This review highlights the critical role of the endocannabinoid system (ECS) in regulating neuropathic pain and explores the therapeutic potential of cannabinoids. Understanding the mechanisms of the ECS, including its receptors, endogenous ligands, and enzymatic routes, can lead to innovative treatments for chronic pain, offering more effective therapies for neuropathic conditions. This review bridges the gap between preclinical studies and clinical applications by emphasizing ECS modulation for better pain management outcomes.

Areas covered: A review mapped the existing literature on neuropathic pain and the effects of modulating the ECS using natural and synthetic cannabinoids. This analysis examined ECS components and their alterations in neuropathic pain, highlighting the peripheral, spinal, and supraspinal mechanisms. This review aimed to provide a thorough understanding of the therapeutic potential of cannabinoids in the management of neuropathic pain.

Expert opinion: Advances in cannabinoid research have shown significant potential for the management of chronic neuropathic pain. The study emphasizes the need for high-quality clinical trials and collaborative efforts among researchers, clinicians, and regulatory bodies to ensure safe and effective integration of cannabinoids into pain management protocols. Understanding the mechanisms and optimizing cannabinoid formulations and delivery methods are crucial for enhancing therapeutic outcomes.”

https://pubmed.ncbi.nlm.nih.gov/39317147/

“Research on the modulation of the endocannabinoid system in nervous tissue related to neuropathic pain reveals complex mechanisms of pain modulation. Dysregulation of the endocannabinoid system, microglial activation, and interactions between various signaling pathways contribute to the onset and persistence of neuropathic pain. Understanding these molecular and cellular processes is crucial for developing targeted therapies that leverage the endocannabinoid system to alleviate neuropathic pain.”

https://www.tandfonline.com/doi/full/10.1080/14728222.2024.2407824

“Smoked Cannabis Proven Effective In Treating Neuropathic Pain”

https://www.sciencedaily.com/releases/2007/10/071024141745.htm

THC vapor inhalation attenuates hyperalgesia in rats using a chronic inflammatory pain model

pubmed logo

“Humans use cannabinoid drugs to alleviate pain.

As cannabis and cannabinoids are legalized in the U.S. for medicinal and recreational use, it has become critical to determine the potential utilities and harms of cannabinoid drugs in individuals living with chronic pain.

Here, we tested the effects of repeated THC vapor inhalation on thermal nociception and mechanical sensitivity, in adult male and female Wistar rats using a chronic inflammatory pain model (i.e., treated with Complete Freund’s Adjuvant [CFA]).

We report that repeated THC vapor inhalation rescues thermal hyperalgesia in males and females treated with CFA, and also reduces mechanical hypersensitivity in CFA males but not females. Many of the anti-hyperalgesic effects of chronic THC vapor were still observable 24 hours after cessation of the last THC exposure.

We also report plasma levels of THC and its major metabolites, some of which are cannabinoid type-1 receptor (CB1) agonists, after the first and tenth days of THC vapor inhalation. Finally, we report that systemic administration of the CB1 inverse agonist AM251 (1mg/kg; i.p.) blocks the anti-hyperalgesic effects of THC vapor in males and females.

These data provide a foundation for future work that will explore the cells and circuits underlying the anti-hyperalgesic effects of THC vapor inhalation in individuals with chronic inflammatory pain.

PERSPECTIVE: Cannabinoids are thought to have potential utility in the treatment of chronic pain, but few animal studies have tested the effects of chronic THC or cannabis in animal models of chronic pain. We tested the effects of repeated THC vapor inhalation on chronic pain-related outcomes in male and female animals.”

https://pubmed.ncbi.nlm.nih.gov/39121915/

https://www.jpain.org/article/S1526-5900(24)00599-6/abstract

Analgesic properties of next generation modulators of endocannabinoid signaling: leveraging modern tools for the development of novel therapeutics

pubmed logo

“Targeting the endocannabinoid (eCB) signaling system for pain relief is an important treatment option that is only now beginning to be mechanistically explored.

In this review, we focus on two recently appreciated cannabinoid-based targeting strategies, treatments with cannabidiol (CBD) and a/b-hydrolase domain containing 6 (ABHD6) inhibitors, which have the exciting potential to produce pain relief through distinct mechanisms of action (MOA) and without intoxication.

We review evidence on plant-derived cannabinoids for pain, with an emphasis on CBD and its multiple molecular targets expressed in pain pathways. We also discuss the function of eCB signaling in regulating pain responses and the therapeutic promises of inhibitors targeting ABHD6, a 2-arachidonoylglycerol (2-AG) hydrolyzing enzyme. Finally, we discuss how the novel cannabinoid biosensor, GRABeCB2.0, may be leveraged to enable the discovery of targets modulated by cannabinoids at a circuit-specific level. 

Significance Statement Cannabis has been used by humans as an effective medicine for millennia, including for pain management. Recent evidence emphasizes the therapeutic potential of compounds that modulate endocannabinoid signaling. Specifically, cannabidiol and inhibitors of the enzyme ABHD6 represent promising strategies to achieve pain relief by modulating endocannabinoid signaling in pain pathways via distinct, non-intoxicating, mechanisms of action.”

https://pubmed.ncbi.nlm.nih.gov/39060165/

https://jpet.aspetjournals.org/content/early/2024/07/26/jpet.124.002119

Cannabidiol and Beta-Caryophyllene Combination Attenuates Diabetic Neuropathy by Inhibiting NLRP3 Inflammasome/NFκB through the AMPK/sirT3/Nrf2 Axis

pubmed logo

“Background: In this study, we investigated in detail the role of cannabidiol (CBD), beta-caryophyllene (BC), or their combinations in diabetic peripheral neuropathy (DN). The key factors that contribute to DN include mitochondrial dysfunction, inflammation, and oxidative stress.

Methods: Briefly, streptozotocin (STZ) (55 mg/kg) was injected intraperitoneally to induce DN in Sprague-Dawley rats, and we performed procedures involving Randall Sellito calipers, a Von Frey aesthesiometer, a hot plate, and cold plate methods to determine mechanical and thermal hyperalgesia in vivo. The blood flow to the nerves was assessed using a laser Doppler device. Schwann cells were exposed to high glucose (HG) at a dose of 30 mM to induce hyperglycemia and DCFDA, and JC1 and Mitosox staining were performed to determine mitochondrial membrane potential, reactive oxygen species, and mitochondrial superoxides in vitro. The rats were administered BC (30 mg/kg), CBD (15 mg/kg), or combination via i.p. injections, while Schwann cells were treated with 3.65 µM CBD, 75 µM BC, or combination to assess their role in DN amelioration.

Results: Our results revealed that exposure to BC and CBD diminished HG-induced hyperglycemia in Schwann cells, in part by reducing mitochondrial membrane potential, reactive oxygen species, and mitochondrial superoxides. Furthermore, the BC and CBD combination treatment in vivo could prevent the deterioration of the mitochondrial quality control system by promoting autophagy and mitochondrial biogenesis while improving blood flow. CBD and BC treatments also reduced pain hypersensitivity to hyperalgesia and allodynia, with increased antioxidant and anti-inflammatory action in diabetic rats. These in vivo effects were attributed to significant upregulation of AMPK, sirT3, Nrf2, PINK1, PARKIN, LC3B, Beclin1, and TFAM functions, while downregulation of NLRP3 inflammasome, NFκB, COX2, and p62 activity was noted using Western blotting.

Conclusions: the present study demonstrated that STZ and HG-induced oxidative and nitrosative stress play a crucial role in the pathogenesis of diabetic neuropathy. We find, for the first time, that a CBD and BC combination ameliorates DN by modulating the mitochondrial quality control system.”

https://www.mdpi.com/2227-9059/12/7/1442

“In summary, the present studies demonstrated that STZ- and HG-induced oxidative and nitrosative stress play a crucial role in the pathogenesis of diabetic neuropathy. The functional, behavioral, and molecular deficits were due to oxidant-induced damage, neuroinflammation, and bioenergetic deficits. These pathological consequences of nerve injury have been attenuated by the combination of CBD and BC in vitro and in vivo.

Our findings suggest that the enhanced neuroprotective effects of combination therapy may be attributable to simultaneous inhibition of oxidative stress, neuroinflammation, and NLRP3, as well as activation of Nrf2. Hence, the combination therapy could be suggested as a potential strategy that can be further pursued for the management of STZ- and HG-induced diabetic neuropathy.”

https://pubmed.ncbi.nlm.nih.gov/39062016/

Cannabidiol and pain

pubmed logo

“Chronic pain presents significant personal, psychological, and socioeconomic hurdles, impacting over 30% of adults worldwide and substantially contributing to disability. Unfortunately, current pharmacotherapy often proves inadequate, leaving fewer than 70% of patients with relief. This shortfall has sparked a drive to seek alternative treatments offering superior safety and efficacy profiles.

Cannabinoid-based pharmaceuticals, notably cannabidiol (CBD), hold promise in pain management, driven by their natural origins, versatility, and reduced risk of addiction. As we navigate the opioid crisis, ongoing research plunges into CBD’s therapeutic potential, buoyed by animal studies revealing its pain-relieving prowess through various system tweaks. However, the efficacy of cannabis in chronic pain management remains a contentious and stigmatized issue.

The International Association for the Study of Pain (IASP) presently refrains from endorsing cannabinoid use for pain relief. Nevertheless, evidence indicates their potential in alleviating cancer-related, neuropathic, arthritis, and musculoskeletal pain, necessitating further investigation. Crucially, our comprehension of CBD’s role in pain management is a journey still unfolding, with animal studies illustrating its analgesic effects through interactions with the endocannabinoid, inflammatory, and nociceptive systems.

As the plot thickens, it’s clear: the saga of chronic pain and CBD’s potential offers a compelling narrative ripe for further exploration and understanding.”

https://pubmed.ncbi.nlm.nih.gov/39029988/

https://www.sciencedirect.com/science/article/abs/pii/S0074774224000680?via%3Dihub

Select Minor Cannabinoids from Cannabis sativa are Cannabimimetic and Antinociceptive in a Mouse Model of Chronic Neuropathic Pain

pubmed logo

“Chronic pain conditions affect nearly 20% of the population in the United States. Current medical interventions, such as opioid drugs, are effective at relieving pain but are accompanied by many undesirable side effects. This is one reason increased numbers of chronic pain patients have been turning to Cannabis for pain management. 

Cannabis contains many bioactive chemical compounds; however, current research looking into lesser-studied minor cannabinoids in Cannabis lacks uniformity between experimental groups and/or excludes female mice from investigation. This makes it challenging to draw conclusions between experiments done with different minor cannabinoid compounds between labs or parse out potential sex differences that could be present.

We chose five minor cannabinoids found in lower quantities within Cannabis: cannabinol (CBN), cannabidivarin (CBDV), cannabigerol (CBG), Δ8-tetrahydrocannabinol (Δ8-THC), and Δ9-tetrahydrocannabivarin (THCV). These compounds were then tested for their cannabimimetic and pain-relieving behaviors in a cannabinoid tetrad assay and a chemotherapy-induced peripheral neuropathy (CIPN) pain model in male and female CD-1 mice.

We found that the minor cannabinoids we tested differed in the cannabimimetic behaviors evoked, as well as the extent. We found that CBN, CBG, and high dose Δ8-THC evoked some tetrad behaviors in both sexes, while THCV and low dose Δ8-THC exhibited cannabimimetic tetrad behaviors only in females. Only CBN efficaciously relieved CIPN pain, which contrasts with reports from other researchers. Together these findings provide further clarity to the pharmacology of minor cannabinoids and suggest further investigation into their mechanism and therapeutic potential. 

Significance Statement Minor cannabinoids are poorly studied ligands present in lower levels in Cannabis than cannabinoids like THC. In this study we evaluated 5 minor cannabinoids (CBN, CBDV, CBG, THCV, and Δ8-THC) for their cannabimimetic and analgesic effects in mice. We found that 4 of the 5 minor cannabinoids showed cannabimimetic activity, while one was efficacious in relieving chronic neuropathic pain. This work is important in further evaluating the activity of these drugs, which are seeing wider public use with marijuana legalization.”

https://pubmed.ncbi.nlm.nih.gov/38834356/

https://jpet.aspetjournals.org/content/early/2024/06/04/jpet.124.002212

Cannabidiol in the dorsal hippocampus attenuates emotional and cognitive impairments related to neuropathic pain: Role of prelimbic neocortex-hippocampal connections

pubmed logo

“Background and purpose: Chronic neuropathic pain (NP) is commonly associated with cognitive and emotional impairments. Cannabidiol (CBD) presents a broad spectrum of action with a potential analgesic effect. This work investigates the CBD effect on comorbidity between chronic NP, depression, and memory impairment.

Experimental approach: The connection between the neocortex and the hippocampus was investigated with biotinylated dextran amine (BDA) deposits in the prelimbic cortex (PrL). Wistar rats were submitted to chronic constriction injury (CCI) of the sciatic nerve and CA1 treatment with CBD (15, 30, 60 nmol).

Key results: BDA-labeled were found in CA1 and dentate gyrus. CCI-induced mechanical and cold allodynia increased c-Fos protein expression in the PrL and CA1. The number of astrocytes in PrL and CA1 increased, and the number of neuroblasts decreased in CA1. The CCI animals showed increasing depressive-like behaviors, such as memory impairment. CBD (60 nmol) treatment decreased mechanical and cold allodynia, attenuated depressive-associated behaviors, and improved memory performance. Cobalt chloride (CoCl2: 1 nM), WAY-100635 (0.37 nmol), and AM251 (100 nmol) intra-PrL reversed the CBD (60 nmol) effect intra-CA1, both in nociceptive, cognitive, and depressive behaviors.

Conclusion: CBD represents a promising therapeutic perspective in the pharmacological treatment of chronic NP and associated comorbidities such as depression and memory impairments. The CBD effects possibly recruit the CA1-PrL pathway, inducing neuroplasticity. CBD acute treatment into the CA1 produces functional and molecular morphological improvements.”

https://pubmed.ncbi.nlm.nih.gov/38797491/

“Cannabidiol (CBD), in turn, is an essential tool for treating symptoms associated with pain and comorbidities with emotional and cognitive changes.”

https://www.sciencedirect.com/science/article/abs/pii/S0278584624001076?via%3Dihub

The Potential Antinociceptive Effect and Mechanism of Cannabis sativa L. Extract on Paclitaxel-Induced Neuropathic Pain in Rats Uncovered by Multi-Omics Analysis

pubmed logo

“Cannabis sativa L. (hemp) is a herbaceous plant rich in cannabinoids with a long history of use in pain treatment.

The most well-characterized cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), garnered much attention in chemotherapy-induced peripheral neuropathy (CIPN) treatment. However, few studies have investigated the biological benefits and mechanism of hemp extract on CIPN.

In the present study, hemp extract (JG) rich in cannabinoids was extracted by supercritical fluid carbon dioxide extraction (SFCE). The antinociceptive efficacy was evaluated using a paclitaxel-induced peripheral neuropathy (PIPN) rat model based on behavioral tests. Further omics-based approaches were applied to explore the potential mechanisms.

The results showed that JG decreased mechanical allodynia, thermal hyperalgesia, and inflammatory cytokines in PIPN rats significantly. Transcriptome analysis identified seven key genes significantly regulated by JG in PIPN model rats, mainly related to the neuroactive ligand-receptor interaction pathway, PPAR signaling pathway, and cAMP signaling pathway. In metabolomic analysis, a total of 39 significantly altered metabolites were identified, mainly correlated with pentose and glucuronate interconversions and the glycerophospholipid metabolism pathway.

Gut microbiota analysis suggested that increased community Lachnoclostridium and Lachnospiraceae_UCG-006 in PIPN rats can be reversed significantly by JG.

In conclusion, hemp extract exhibited antinociceptive effects on PIPN. The analgesic mechanism was probably related to the regulation of inflammation, neuroactive ligand-receptor interaction pathway, sphingolipid metabolism, etc. This study provides novel insights into the functional interactions of Cannabis sativa L. extract on PIPN.”

https://pubmed.ncbi.nlm.nih.gov/38731449/

“In conclusion, the antinociceptive effects and mechanism of Cannabis sativa L. extract rich in cannabinoids in PIPN rats were evaluated by using pharmacological methods integrated with transcriptomic analysis, metabolomic analysis, and gut microbiota analysis. 

Cannabis sativa L. extract effectively alleviated neuropathic pain induced by PTX, mainly by the identified 7 key genes, 39 metabolic biomarkers, and 2 bacterial genera.

Related pathways may be involved in the inflammatory response, regulating neuroactive ligand–receptor interaction pathway, PPAR signaling pathway, inflammatory mediator regulation of TRP channels, glycerophospholipid metabolism, pentose and glucuronate interconversions, etc.

Our study provides novel insights into the functional interactions of Cannabis sativa L. extract on PIPN, which offers key information for new strategies in PIPN treatment and provides a reference for the medicinal development of hemp.”

https://www.mdpi.com/1420-3049/29/9/1958

Cannabidiol-Loaded Solid Lipid Nanoparticles Ameliorate the Inhibition of Proinflammatory Cytokines and Free Radicals in an In Vitro Inflammation-Induced Cell Model

pubmed logo

“Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability.

This study introduces an effective method for preparing CBD-loaded solid lipid nanoparticles (CBD-SLNs) using a combination of low-energy hot homogenization and ultrasonication. We enhanced this process by employing statistical optimization with response surface methodology (RSM). The optimized CBD-SLN formulation utilizes glyceryl monostearate as the primary lipid component of the nanocarrier. The CBD-SLN formulation is screened as a potential tool for managing chronic inflammation. Stable, uniformly dispersed spherical nanoparticles with a size of 123 nm, a surface charge of -32.1 mV, an encapsulation efficiency of 95.16%, and a drug loading of 2.36% were obtained.

The CBD-SLNs exhibited sustained release properties, ensuring prolonged and controlled CBD delivery, which could potentially amplify its therapeutic effects. Additionally, we observed that CBD-SLNs significantly reduced both reactive oxygen and nitrogen species and proinflammatory cytokines in chondrocyte and macrophage cell lines, with these inhibitory effects being more pronounced than those of free CBD.

In conclusion, CBD-SLNs demonstrated superiority over free CBD, highlighting its potential as an effective delivery system for CBD.”

https://pubmed.ncbi.nlm.nih.gov/38731964/

https://www.mdpi.com/1422-0067/25/9/4744