Synergistic interactions between cannabinoid and opioid analgesics.

Life Sciences

“Cannabinoids and opioids both produce analgesia through a G-protein-coupled mechanism that blocks the release of pain-propagating neurotransmitters in the brain and spinal cord. However, high doses of these drugs, which may be required to treat chronic, severe pain, are accompanied by undesirable side effects.

Thus, a search for a better analgesic strategy led to the discovery that delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent of marijuana, enhances the potency of opioids such as morphine in animal models.

In addition, studies have determined that the analgesic effect of THC is, at least in part, mediated through delta and kappa opioid receptors, indicating an intimate connection between cannabinoid and opioid signaling pathways in the modulation of pain perception.

A host of behavioral and molecular experiments have been performed to elucidate the role of opioid receptors in cannabinoid-induced analgesia. The aim of such studies is to develop a novel analgesic regimen using low dose combinations of cannabinoids and opioids to effectively treat acute and chronic pain, especially pain that may be resistant to opioids alone.”

Interaction of the cannabinoid and opioid systems in the modulation of nociception

Publication Cover

“Cannabinoids and opioids produce antinociceptive synergy.

Cannabinoids such as Δ-9-tetrahydrocannabinol (THC) release endogenous opioids and endocannabinoids such as anandamide (AEA) also alter endogenous opioid tone.

Opioids and cannabinoids bind distinct receptors that co-localize in areas of the brain involved with the processing of pain signals. Therefore, it is logical to look at interactions of these two systems in the modulation of both acute and chronic pain.

This review summarizes the data indicating that with cannabinoid/opioid therapy one may be able to produce long-term antinociceptive effects at doses devoid of substantial side effects, while preventing the neuronal biochemical changes that accompany tolerance.

The clinical utility of modulators of the endocannabinoid system as a potential mimic for THC-like drugs in analgesia and tolerance-sparing effects of opioids is a critical future direction also addressed in the review.”

https://www.tandfonline.com/doi/abs/10.1080/09540260902782794

Pharmacotherapeutic considerations for use of cannabinoids to relieve pain in patients with malignant diseases.

 

“The aim of this review was to assess the efficacy of cannabis preparations for relieving pain in patients with malignant diseases, through a systematic review of randomized controlled trials (RCTs), which were predominantly double-blind trials that compared cannabis preparation to a placebo.

RESULTS:

Fifteen of the 18 trials demonstrated a significant analgesic effect of cannabinoids as compared to placebo. The most commonly reported adverse effects were generally well tolerated, mild to moderate. The main side effects were drowsiness, nausea, vomiting and dry mouth. There is evidence that cannabinoids are safe and modestly effective in neuropathic pain and also for relieving pain in patients with malignant diseases. The proportion of “responders” (patients who at the end of 2 weeks of treatment reported ≥30% reduction in pain intensity on a scale of 0-10, which is considered to be clinically important) was 43% in comparison with placebo (21%).

CONCLUSION:

The target dose for relieving pain in patients with malignant diseases is most likely about 10 actuations per day, which is about 27 mg tetrahydrocannabinol (THC) and 25 mg cannabidiol (CBD), and the highest approved recommended dose is 12 actuations per day (32 mg THC/30 mg CBD). Further large studies of cannabinoids in homogeneous populations are required.”

https://www.ncbi.nlm.nih.gov/pubmed/29719417

https://www.dovepress.com/pharmacotherapeutic-considerations-for-use-of-cannabinoids-to-relieve–peer-reviewed-article-JPR

Cannabis for Chronic Pain: Challenges and Considerations.

Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy banner

“The National Academies of Sciences, Engineering, and Medicine has found substantial evidence that cannabis (plant) is effective for the treatment of chronic pain in adults, and moderate evidence that oromucosal cannabinoids (extracts, especially nabiximols) improve short-term sleep disturbances in chronic pain. ”

https://www.ncbi.nlm.nih.gov/pubmed/29637590

https://onlinelibrary.wiley.com/doi/abs/10.1002/phar.2115

Impact of co-administration of oxycodone and smoked cannabis on analgesia and abuse liability.

Image result for neuropsychopharmacology

“Cannabinoids combined with opioids produce synergistic antinociceptive effects, decreasing the lowest effective antinociceptive opioid dose (i.e., opioid-sparing effects) in laboratory animals.

Although pain patients report greater analgesia when cannabis is used with opioids, no placebo-controlled studies have assessed the direct effects of opioids combined with cannabis in humans or the impact of the combination on abuse liability.

This double-blind, placebo-controlled, within-subject study determined if cannabis enhances the analgesic effects of low dose oxycodone using a validated experimental model of pain and its effects on abuse liability.

Cannabis enhances the analgesic effects of sub-threshold oxycodone, suggesting synergy, without increases in cannabis’s abuse liability. These findings support future research into the therapeutic use of opioid-cannabinoid combinations for pain.”

Sex differences in antinociceptive response to Δ-9-tetrahydrocannabinol and CP 55,940 in the mouse formalin test.

 Related image

“Cannabinoids have shown promise for the treatment of intractable pain states and may represent an alternative pharmacotherapy for pain management.

A growing body of clinical evidence suggests a role for sex in pain perception and in cannabinoid response.

We examined cannabinoid sensitivity and tolerance in male and female mice expressing a desensitization-resistant form (S426A/S430A) of the cannabinoid type 1 receptor (CB1R).

Mice were assessed for acute and inflammatory nociceptive behaviors in the formalin test following pretreatment with either vehicle or mixed CB1R/CB2R agonists, Δ-9-tetrahydrocannabinol ([INCREMENT]-THC) (1-6 mg/kg) or CP 55,940 (0.06-0.2 mg/kg). Tolerance to the effects of 6 mg/kg [INCREMENT]-THC or 0.1 mg/kg CP 55,940 was examined by the formalin test following chronic daily dosing.

Female mice showed decreased sensitivity to the effects of [INCREMENT]-THC and CP 55,940 compared with male mice. The S426A/S430A mutation increased the attenuation of nociceptive behaviors for both agonists in both sexes. Female mice displayed delayed tolerance to [INCREMENT]-THC compared with male mice, whereas the S426A/S430A mutation conferred a delay in tolerance to [INCREMENT]-THC in both sexes. Male S426A/S430A mutant mice also display resistance to tolerance to CP 55,940 compared with wild-type controls.

This study demonstrates sex and genotype differences in response for two different cannabinoid agonists. The results underscore the importance of including both male and female mice in preclinical studies of pain and cannabinoid pharmacology.”

https://www.ncbi.nlm.nih.gov/pubmed/29461336

https://insights.ovid.com/crossref?an=00001756-900000000-98413

The Cannabinoids Δ8THC, CBD, and HU-308 Act via Distinct Receptors to Reduce Corneal Pain and Inflammation

Mary Ann Liebert, Inc. publishers

“Corneal injury can result in dysfunction of corneal nociceptive signaling and corneal sensitization.

Activation of the endocannabinoid system has been reported to be analgesic and anti-inflammatory.

The purpose of this research was to investigate the antinociceptive and anti-inflammatory effects of cannabinoids with reported actions at cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors and/or noncannabinoid receptors in an experimental model of corneal hyperalgesia.

Topical cannabinoids reduce corneal hyperalgesia and inflammation.

The antinociceptive and anti-inflammatory effects of Δ8THC are mediated primarily via CB1R, whereas that of the cannabinoids CBD and HU-308, involve activation of 5-HT1A receptors and CB2Rs, respectively.

Cannabinoids could be a novel clinical therapy for corneal pain and inflammation resulting from ocular surface injury.”

https://www.ncbi.nlm.nih.gov/pubmed/29450258

http://online.liebertpub.com/doi/abs/10.1089/can.2017.0041

Contribution of spinal 5-HT5A receptors to the antinociceptive effects of systemically administered cannabinoid agonist WIN 55,212-2 and morphine.

Canadian Journal of Physiology and Pharmacology

“The antinociceptive effects of cannabinoids and opioids have been known for centuries.

Serotonin and its receptors are also known to play important roles in nociception. However, the contribution of spinal 5-HT5A receptors in antinociceptive effects of cannabinoids and opioids has not been studied.

We conducted this study to clarify spinal mechanisms of the actions of the antinociceptive effects of cannabinoids and opioids.

Our findings show that spinal 5-HT5A receptors are involved in the antinociceptive effects of WIN 55,212-2 and morphine.”

https://www.ncbi.nlm.nih.gov/pubmed/29406831

http://www.nrcresearchpress.com/doi/10.1139/cjpp-2017-0567#.Wnr8P2inHrc

Medical Cannabis for Neuropathic Pain.

Current Pain and Headache Reports

“Many cultures throughout history have used cannabis to treat a variety of painful ailments. Neuropathic pain is a complicated condition that is challenging to treat with our current medications.

Recent scientific discovery has elucidated the intricate role of the endocannabinoid system in the pathophysiology of neuropathic pain. As societal perceptions change, and legislation on medical cannabis relaxes, there is growing interest in the use of medical cannabis for neuropathic pain.

We examined current basic scientific research and data from recent randomized controlled trials (RCTs) evaluating medical cannabis for the treatment of neuropathic pain.

These studies involved patients with diverse etiologies of neuropathic pain and included medical cannabis with different THC concentrations and routes of administration. Multiple RCTs demonstrated efficacy of medical cannabis for treating neuropathic pain, with number needed to treat (NNT) values similar to current pharmacotherapies.

Although limited by small sample sizes and short duration of study, the evidence appears to support the safety and efficacy of short-term, low-dose cannabis vaporization and oral mucosal delivery for the treatment of neuropathic pain.

The results suggest medical cannabis may be as tolerable and effective as current neuropathic agents; however, more studies are needed to determine the long-term effects of medical cannabis use. Furthermore, continued research to optimize dosing, cannabinoidratios, and alternate routes of administration may help to refine the therapeutic role of medical cannabis for neuropathic pain.”

https://www.ncbi.nlm.nih.gov/pubmed/29388063

https://link.springer.com/article/10.1007%2Fs11916-018-0658-8

Cannabis Use is Associated with Lower Odds of Prescription Opioid Analgesic Use Among HIV-Infected Individuals with Chronic Pain.

Publication Cover

“Chronic pain is common in the United States and prescribed opioid analgesics use for noncancer pain has increased dramatically in the past two decades, possibly accounting for the current opioid addiction epidemic. Co-morbid drug use in those prescribed opioid analgesics is common, but there are few data on polysubstance use patterns.

We explored patterns of use of cigarette, alcohol, and illicit drugs in HIV-infected people with chronic pain who were prescribed opioid analgesics.

Almost half of the sample of people with HIV and chronic pain reported current prescribed opioid analgesic use (N = 372, 47.1%). Illicit drug use was common (N = 505, 63.9%), and cannabis was the most commonly used illicit substance (N = 311, 39.4%).

In multivariate analyses, only cannabis use was significantly associated with lower odds of prescribed opioid analgesic use (adjusted odds ratio = 0.57; 95% confidence interval: 0.38-0.87).

Conclusions/Importance: Our data suggest that new medical cannabis legislation might reduce the need for opioid analgesics for pain management, which could help to address adverse events associated with opioid analgesic use.”

https://www.ncbi.nlm.nih.gov/pubmed/29338578

http://www.tandfonline.com/doi/abs/10.1080/10826084.2017.1416408?journalCode=isum20