Preferences for Medical Marijuana over Prescription Medications Among Persons Living with Chronic Conditions: Alternative, Complementary, and Tapering Uses.

Mary Ann Liebert, Inc. publishers

“Despite expanded legalization and utilization of medical cannabis (MC) internationally, there is a lack of patient-centered data on how MC is used by persons living with chronic conditions in tandem with or instead of prescription medications. This study describes approaches to use of MC vis-à-vis prescription medications in the treatment of selected chronic conditions.

RESULTS:

Participants described a range of approaches to using MC, including (1) as alternatives to using prescription or over-the-counter medications; (2) complementary use with prescription medications; and (3) as a means for tapering off prescription medications. Motives reported for reducing or eliminating prescription medications included concerns regarding toxicity, dependence, and tolerance, and perceptions that MC improves management of certain symptoms and has quicker action and longer lasting effects.

CONCLUSIONS:

MC appears to serve as both a complementary method for symptom management and treatment of medication side-effects associated with certain chronic conditions, and as an alternative method for treatment of pain, seizures, and inflammation in this population. Additional patient-centered research is needed to identify specific dosing patterns of MC products associated with symptom alleviation and produce longitudinal data assessing chronic disease outcomes with MC use.”

Efficacy of Cannabis-Based Medicines for Pain Management: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

Image result for Pain Physician.

“The management of chronic pain is a complex challenge worldwide. Cannabis-based medicines (CBMs) have proven to be efficient in reducing chronic pain, although the topic remains highly controversial in this field.

OBJECTIVES:

This study’s aim is to conduct a conclusive review and meta-analysis, which incorporates all randomized controlled trials (RCTs) in order to update clinicians’ and researchers’ knowledge regarding the efficacy and adverse events (AEs) of CBMs for chronic and postoperative pain treatment.

CONCLUSIONS:

The current systematic review suggests that CBMs might be effective for chronic pain treatment, based on limited evidence, primarily for neuropathic pain (NP) patients. Additionally, GI AEs occurred more frequently when CBMs were administered via oral/oromucosal routes than by inhalation.”

https://www.ncbi.nlm.nih.gov/pubmed/28934780

Results of a Double-Blind, Randomized, Placebo-Controlled Study of Nabiximols Oromucosal Spray as Adjunctive Therapy in Advanced Cancer Patients With Chronic Uncontrolled Pain.

Journal of Pain and Symptom Management Home

“Prior phase 2/3 studies found that cannabinoids might provide adjunctive analgesia in advanced cancer patients with uncontrolled pain.

To assess adjunctive nabiximols (Sativex®), an extract of Cannabis sativa containing two potentially therapeutic cannabinoids (Δ9-tetrahydrocannabinol and cannabidiol, in advanced cancer patients with chronic pain unalleviated by optimized opioid therapy.

Nabiximols was statistically superior to placebo on two of three quality-of-life instruments at week 3 and on all three at week 5.

The safety profile of nabiximols was consistent with earlier studies.

Although not superior to placebo on the primary efficacy endpoint, nabiximols had benefits on multiple secondary endpoints, particularly in US patients.

Nabiximols might have utility in patients with advanced cancer who receive a lower opioid dose, such as individuals with early intolerance to opioid therapy.”

https://www.ncbi.nlm.nih.gov/pubmed/28923526

http://www.jpsmjournal.com/article/S0885-3924(17)30465-7/fulltext

Activation of dorsal horn cannabinoid CB2 receptor suppresses the expression of P2Y12 and P2Y13 receptors in neuropathic pain rats.

Image result for journal of neuroinflammation

“More evidence suggests that dorsal spinal cord microglia is an important site contributing to CB2 receptor-mediated analgesia. The upregulation of P2Y12 and P2Y13 purinoceptors in spinal dorsal horn microglia is involved in the development of pain behavior caused by peripheral nerve injury. However, it is not known whether the expression of P2Y12 and P2Y13 receptors at spinal dorsal horn will be influenced after CB2 receptor activation in neuropathic pain rats. Chronic constriction injury (CCI) and intrathecal ADPbetaS injection were performed in rats to induce neuropathic pain.

In CCI- and ADPbetaS-treated rats, AM1241 pretreatment could efficiently activate CB2 receptor, while inhibiting p38MAPK and NF-kappaB activation in the dorsal spinal cord. CB2 receptor stimulation decreased P2Y13 receptor expression via p38MAPK/NF-kappaB signaling. On the other hand, CB2 receptor activation decreased P2Y12 receptor expression via p38MAPK-independent NF-kappaB signaling pathway.”

https://www.ncbi.nlm.nih.gov/pubmed/28899427

Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis.

logo

“Osteoarthritis (OA) is a multifactorial joint disease, which includes joint degeneration, intermittent inflammation, and peripheral neuropathy. Cannabidiol (CBD) is a non-euphoria producing constituent of cannabis that has the potential to relieve pain.

The aim of this study was to determine if CBD is anti-nociceptive in OA, and whether inhibition of inflammation by CBD could prevent the development of OA pain and joint neuropathy.

The therapeutic and prophylactic effects of peripheral CBD (100-300μg) were assessed. In end stage OA, CBD dose-dependently decreased joint afferent firing rate, and increased withdrawal threshold and weight bearing (p<0.0001; n=8). Acute, transient joint inflammation was reduced by local CBD treatment (p<0.0001; n=6). Prophylactic administration of CBD prevented the development of MIA-induced joint pain at later time points (p<0.0001; n=8), and was also found to be neuroprotective (p<0.05; n=6-8).

The data presented here indicate that local administration of CBD blocked OA pain. Prophylactic CBD treatment prevented the later development of pain and nerve damage in these OA joints.

These findings suggest that CBD may be a safe, useful therapeutic for treating OA joint neuropathic pain.”

https://www.ncbi.nlm.nih.gov/pubmed/28885454             https://insights.ovid.com/crossref?an=00006396-900000000-99152

Cannabis constituent synergy in a mouse neuropathic pain model.

logo

“Cannabis and its psychoactive constituent Δ9-tetrahydrocannabinol (THC) have efficacy against neuropathic pain however, this is hampered by their side-effects. It has been suggested that co-administration with another major constituent cannabidiol (CBD) might enhance the analgesic actions of THC and minimise its deleterious side-effects.

We examined the basis for this phytocannabinoid interaction in a mouse chronic constriction injury (CCI) model of neuropathic pain. Acute systemic administration of THC dose-dependently reduced CCI-induced mechanical and cold allodynia, but also produced motor incoordination, catalepsy and sedation. CBD produced a lesser dose-dependent reduction in allodynia, but did not produce the cannabinoid side-effects. When co-administered in a fixed ratio, THC and CBD produced a biphasic dose-dependent reduction in allodynia. At low doses, the THC:CBD combination displayed a 200-fold increase in anti-allodynic potency, but had lower efficacy compared to that predicted for an additive drug interaction. By contrast, high THC:CBD doses had lower potency, but greater anti-allodynic efficacy compared to that predicted for an additive interaction. Only the high dose THC:CBD anti-allodynia was associated with cannabinoid side-effects and these were similar to those of THC alone. Unlike THC, the low dose THC:CBD anti-allodynia was not cannabinoid receptor mediated.

These findings demonstrate that CBD synergistically enhances the pain relieving actions of THC in an animal neuropathic pain model, but has little impact on the THC-induced side-effects. This suggests that low dose THC:CBD combination treatment has potential in the treatment of neuropathic pain.”

The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain.

Image result for Neuropsychopharmacology

“A great need exists for the development of new medications to treat pain resulting from various disease states and types of injury. Given that the endogenous cannabinoid (ie, endocannabinoid) system modulates neuronal and immune cell function, both of which play key roles in pain, therapeutics targeting this system hold promise as novel analgesics.

Potential therapeutic targets include the cannabinoid receptors, type 1 and 2, as well as biosynthetic and catabolic enzymes of the endocannabinoids N-arachidonoylethanolamine and 2-arachidonoylglycerol. Notably, cannabinoid receptor agonists as well as inhibitors of endocannabinoid-regulating enzymes fatty acid amide hydrolase and monoacylglycerol lipase produce reliable antinociceptive effects, and offer opioid-sparing antinociceptive effects in myriad preclinical inflammatory and neuropathic pain models.

Emerging clinical studies show that ‘medicinal’ cannabis or cannabinoid-based medications relieve pain in human diseases, such as cancer, multiple sclerosis, and fibromyalgia.

Here, we examine the preclinical and clinical evidence of various endocannabinoid system targets as potential therapeutic strategies for inflammatory and neuropathic pain conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/28857069

https://www.nature.com/npp/journal/vaop/naam/abs/npp2017204a.html

Cannabis Roots: A Traditional Therapy with Future Potential for Treating Inflammation and Pain

Image result for cannabis and cannabinoid research

“The cannabis plant is known for its multiple uses: the leaves, flowers, seeds, stalks, and resin glands have all been exploited for food, fuel, fiber, medicine, and other uses.

The roots of the cannabis plant have a long history of medical use stretching back millennia. However, the therapeutic potential of cannabis roots has been largely ignored in modern times.

In the first century, Pliny the Elder described in Natural Histories that a decoction of the root in water could be used to relieve stiffness in the joints, gout, and related conditions. By the 17th century, various herbalists were recommending cannabis root to treat inflammation, joint pain, gout, and other conditions.

Active compounds identified and measured in cannabis roots include triterpenoids, friedelin (12.8 mg/kg) and epifriedelanol (21.3 mg/kg); alkaloids, cannabisativine (2.5 mg/kg) and anhydrocannabisativine (0.3 mg/kg); carvone and dihydrocarvone; N-( p-hydroxy-b-phenylethyl)-p-hydroxy-trans-cinnamamide (1.6 mg/kg); various sterols such as sitosterol (1.5%), campesterol (0.78%), and stigmasterol (0.56%); and other minor compounds, including choline. Of note, cannabis roots are not a significant source of D9 – tetrahydrocannabinol (THC), cannabidiol, or other known phytocannabinoids.

Conclusion: The current available data on the pharmacology of cannabis root components provide significant support to the historical and ethnobotanical claims of clinical efficacy. Certainly, this suggests the need for reexamination of whole root preparations on inflammatory and malignant conditions employing modern scientific techniques.”

http://online.liebertpub.com/doi/full/10.1089/can.2017.0028

Single oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for eleven days.

Nanomedicine Home

“Neuropathic pain, resistant to opiates and other drugs, is a chronic/persistent state with a complex treatment and often poor efficacy. In this scenario, cannabinoids are increasingly regarded as a genuine alternative. In this paper, and in an experimental animal model of neuropathic pain, we studied the efficacy of three kinds of PLGA nanoparticles containing synthetic cannabinoid CB13: (i) plain nanoparticles (PLGA); (ii) particles coated with PEG chains (PLGA+PEG) and (iii) particles possessing hydrophilic surfaces obtained by covalently binding PEG chains (PLGA-PEG). The optimized formulation, CB13-PLGA-PEG, showed high drug loading (13%) and small size (<300nm) with a narrow distribution and controlled surface properties (near-neutral zeta potential and stable PEG corona). Animal nociceptive behavioral studies were conducted by paw pressure and acetone tests. Versus the free CB13, CB13-PLGA-PEG nanoparticles showed a very noticeable analgesic efficacy with the longest sustained pain-relieving effect, lasting up to eleven days after one oral dose.”

https://www.ncbi.nlm.nih.gov/pubmed/28756090

http://www.nanomedjournal.com/article/S1549-9634(17)30140-5/fulltext

Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice.

Cover image

“Painful peripheral neuropathy is a common side effect of paclitaxel (PTX). The use of analgesics is an important component for management of PTX-induced peripheral neuropathy (PINP). However, currently employed analgesics have several side effects and are poorly effective.

β-caryophyllene (BCP), a dietary selective CB2 agonist, has shown analgesic effect in neuropathic pain models, but its role in chemotherapy-induced neuropathic pain has not yet been investigated. Herein, we used the mouse model of PINP to show the therapeutic effects of BCP in this neuropathy.

Our findings show that BCP effectively attenuated PINP, possibly through CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release. Taken together, our results suggest that BCP could be used to attenuate the establishment and/or treat PINP.”  https://www.ncbi.nlm.nih.gov/pubmed/28729222

http://www.sciencedirect.com/science/article/pii/S0028390817303465

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934