Acidic cannabinoids suppress pro-inflammatory cytokine release by blocking Store-Operated Calcium Entry

Graphical Abstract

“Cannabis sativa has long been known to affect numerous biological activities. Although plant extracts, purified cannabinoids, or synthetic cannabinoid analogs have shown therapeutic potential in pain, inflammation, seizure disorders, appetite stimulation, muscle spasticity, and treatment of nausea/vomiting, the underlying mechanisms of action remain ill-defined.

In this study we provide the first comprehensive overview of the effects of whole-plant Cannabis extracts and various pure cannabinoids on store-operated calcium (Ca2+) entry (SOCE) in several different immune cell lines.

SOCE is one of the most significant Ca2+ influx mechanism in immune cells and it is critical for the activation of T lymphocytes, leading to the release of pro-inflammatory cytokines and mediating inflammation and T cell proliferation, key mechanisms for maintaining chronic pain.

While the two major cannabinoids cannabidiol (CBD) and trans-Δ9-tetrahydrocannabinol (THC) were largely ineffective in inhibiting SOCE, we report for the first time that several minor cannabinoids, mainly the carboxylic acid derivatives and particularly the cannabigerolic acid (CBGA), demonstrated high potency against SOCE by blocking Calcium Release-Activated Calcium (CRAC) currents. Moreover, we show that this inhibition of SOCE resulted in a decrease of Nuclear Factor of Activated T-cells (NFAT) activation and Interleukin 2 (IL-2) production in human T lymphocytes.

Taken together, these results indicate that cannabinoid-mediated inhibition of a pro-inflammatory target such as SOCE may at least partially explain the anti-inflammatory and analgesic effects of Cannabis.”

https://pubmed.ncbi.nlm.nih.gov/35910331/

https://academic.oup.com/function/advance-article/doi/10.1093/function/zqac033/6634246

“Marijuana plant might hold key to treating chronic inflammation”

https://medicalxpress.com/news/2022-07-marijuana-key-chronic-inflammation.html

Efficacy, Safety, and Regulation of Cannabidiol on Chronic Pain: A Systematic Review

Archive of "Cureus". - PMC

“We conducted a systematic review to determine the efficacy and safety of cannabidiol (CBD) for chronic pain.

CBD and tetrahydrocannabinol (THC), both from Cannabis plants with almost identical chemical structures, attach to the CB receptor, eliciting different effects like the psychoactivity seen on THC but less or none in CBD.

Regulations of CBD worldwide differ from each other due to the insufficiency of solid evidence to establish its benefit versus the risks. However, a few studies are showing the benefits of CBD not only for chronic pain but also for sleep improvement and quality of life.

In conclusion, CBD is an excellent alternative to an opioid in chronic pain because CBD is non-intoxicating in its pure form. More clinical trials should be done to prove CBD’s significance clinically and statistically.”

https://pubmed.ncbi.nlm.nih.gov/35860716/

“It is essential to know that pure CBD extract is a strong candidate as an alternative to opioid medication since it is nonintoxicating and dependence is less. This systematic review can benefit other researchers and even ordinary people eager to know the latest updates on CBD research on chronic pain. In the future, clinical trials should focus more on using pure CBD extract to treat chronic pain to attain evidence to properly recommend CBD in the health insurance sector so that patients may benefit to the full extent.”

https://www.cureus.com/articles/101310-efficacy-safety-and-regulation-of-cannabidiol-on-chronic-pain-a-systematic-review


Tetrahydrocannabinol and cannabidiol medicines for chronic pain and mental health conditions

SpringerLink

“Combination tetrahydrocannabinol (THC)/cannabidiol (CBD) medicines or CBD-only medicines are prospective treatments for chronic pain, stress, anxiety, depression, and insomnia. THC and CBD increase signaling from cannabinoid receptors, which reduces synaptic transmission in parts of the central and peripheral nervous systems and reduces the secretion of inflammatory factors from immune and glial cells.

The overall effect of adding CBD to THC medicines is to enhance the analgesic effect but counteract some of the adverse effects. There is substantial evidence for the effectiveness of THC/CBD combination medicines for chronic pain, especially neuropathic and nociplastic pain or pain with an inflammatory component. For CBD-only medication, there is substantial evidence for stress, moderate evidence for anxiety and insomnia, and minimal evidence for depression and pain.

THC/CBD combination medicines have a good tolerability and safety profile relative to opioid analgesics and have negligible dependence and abuse potential; however, should be avoided in patients predisposed to depression, psychosis and suicide as these conditions appear to be exacerbated. Non-serious adverse events are usually dose-proportional, subject to tachyphylaxis and are rarely dose limiting when patients are commenced on a low dose with gradual up-titration. THC and CBD inhibit several Phase I and II metabolism enzymes, which increases the exposure to a wide range of drugs and appropriate care needs to be taken. Low-dose CBD that appears effective for chronic pain and mental health has good tolerability and safety, with few adverse effects and is appropriate as an initial treatment.”

https://pubmed.ncbi.nlm.nih.gov/35796920/

“Tetrahydrocannabinol (THC) and cannabidiol (CBD) combination medicines and CBD-only medicines are prospective new treatments for chronic pain, stress, anxiety, depression, and insomnia, which are all medical conditions in need of better therapeutics. Both THC/CBD combination and CBD-only medicines could provide effective new treatment options for pain and mental health, respectively, and both have good safety and tolerability profiles relative to the current treatments.

THC and CBD combination medicines have a good safety and tolerability profile that is appropriate for opioid stage (stage 2–3) treatment of chronic pain. Low-dose CBD could be used as an initial treatment for chronic pain and for stress, anxiety, depression, and insomnia. High quality efficacy evidence is best for THC/CBD combination medicines for chronic pain and CBD-only medicines for stress and anxiety. “

https://link.springer.com/article/10.1007/s10787-022-01020-z

Patient Experience and Perspective on Medical Cannabis as an Alternative for Musculoskeletal Pain Management

JAAOS - Journal of the American Academy of Orthopaedic Surgeons

“Introduction: The current rate of opioid prescription is disquieting because of their high abuse potential, adverse effects, and thousands of overdose deaths. This situation imposes urgency in seeking alternatives for adequate pain management. From this perspective, this study aimed to evaluate the experience and the perceived analgesic efficacy of medical cannabis in managing the pain associated with musculoskeletal conditions.

Methods: A 28-question survey was distributed to patients at a major medical cannabis center in Puerto Rico for 2 months. Demographics, medical history, cannabis usage, cannabis use perspective, and analgesic efficacy were assessed in the questionnaire.

Results: One hundred eighty-four patients completed our survey. The majority (67%) were males, and the participants’ average age was 38 years. This study showed an average pain reduction score of 4.02 points on the Numeric Rating Scale among all the participants. Those with musculoskeletal conditions reported a notable average pain reduction score of 4.47 points. In addition, 89% of the participants considered medical cannabis to be more effective than narcotics for adequate pain management.

Conclusions: This study demonstrated that the use of medical cannabis among patients with musculoskeletal conditions effectively reduced pain levels based on their Numeric Rating Scale reported scores.”

https://pubmed.ncbi.nlm.nih.gov/35796526/

“This study showed that the use of medical cannabis among patients with musculoskeletal conditions effectively reduced pain levels based on their NRS reported scores. In addition, most patients using medical cannabis considered that this drug represents a better option than narcotics (ie, opioids) for adequate pain management.”

https://journals.lww.com/jaaosglobal/Fulltext/2022/07000/Patient_Experience_and_Perspective_on_Medical.6.aspx

Chronic Pain and the Endocannabinoid System: Smart Lipids – A Novel Therapeutic Option?

Karger Publishers Further Expands into Open Access and Open Science | STM  Publishing News

“The development of a high-end cannabinoid-based therapy is the result of intense translational research, aiming to convert recent discoveries in the laboratory into better treatments for patients. Novel compounds and new regimes for drug treatment are emerging. Given that previously unreported signaling mechanisms for cannabinoids have been uncovered, clinical studies detailing their high therapeutic potential are mandatory. The advent of novel genomic, optogenetic, and viral tracing and imaging techniques will help to further detail therapeutically relevant functional and structural features. An evolutionarily highly conserved group of neuromodulatory lipids, their receptors, and anabolic and catabolic enzymes are involved in a remarkable variety of physiological and pathological processes and has been termed the endocannabinoid system (ECS). A large body of data has emerged in recent years, pointing to a crucial role of this system in the regulation of the behavioral domains of acquired fear, anxiety, and stress-coping. Besides neurons, also glia cells and components of the immune system can differentially fine-tune patterns of neuronal activity. Dysregulation of ECS signaling can lead to a lowering of stress resilience and increased incidence of psychiatric disorders. Chronic pain may be understood as a disease process evoked by fear-conditioned nociceptive input and appears as the dark side of neuronal plasticity. By taking a toll on every part of your life, this abnormal persistent memory of an aversive state can be more damaging than its initial experience. All strategies for the treatment of chronic pain conditions must consider stress-related comorbid conditions since cognitive factors such as beliefs, expectations, and prior experience (memory of pain) are key modulators of the perception of pain. The anxiolytic and anti-stress effects of medical cannabinoids can substantially modulate the efficacy and tolerability of therapeutic interventions and will help to pave the way to a successful multimodal therapy. Why some individuals are more susceptible to the effects of stress remains to be uncovered. The development of personalized prevention or treatment strategies for anxiety and depression related to chronic pain must also consider gender differences. An emotional basis of chronic pain opens a new horizon of opportunities for developing treatment strategies beyond the repeated sole use of acutely acting analgesics. A phase I trial to determine the pharmacokinetics, psychotropic effects, and safety profile of a novel nanoparticle-based cannabinoid spray for oromucosal delivery highlights a remarkable innovation in galenic technology and urges clinical studies further detailing the huge therapeutic potential of medical cannabis (Lorenzl et al.; this issue).”

https://pubmed.ncbi.nlm.nih.gov/35702403/

“The evidence that full-spectrum cannabis preparations have medical benefits with less unwanted central effects stimulated the development of an oromucosal spray containing full-spectrum water-soluble cannabis. This remarkable innovation in galenic technology advocates clinical studies further and enables the realization of the very promising therapeutic potentials. Medicinal cannabis has a favorable safety and tolerability profile”

https://www.karger.com/Article/FullText/522432

Sex-Dependent Prescription Patterns and Clinical Outcomes Associated With the Use of Two Oral Cannabis Formulations in the Multimodal Management of Chronic Pain Patients in Colombia

Frontiers - Home | Facebook

“To date, the therapeutic use of cannabinoids in chronic pain management remains controversial owing to the limited clinical evidence found in randomized clinical trials (RCTs), the heterogeneous nature of the clinical indication, and the broad range of cannabis-based medicinal products (CBMPs) used in both experimental and observational clinical studies.

Here we evaluate patient-reported clinical outcomes (PROMS) in a cohort of adult patients, diagnosed with chronic pain of diverse etiology, who received adjuvant treatment with oral, cannabis-based, magistral formulations between May and September 2021 at the Latin American Institute of Neurology and Nervous System (ILANS-Zerenia) in Bogotá, Colombia.

During this period, 2,112 patients completed a PROMS questionnaire aimed at capturing the degree of clinical improvement of their primary symptom and any potential side effects. Most participants were female (76.1%) with an average age of 58.7 years old, and 92.5% (1,955 patients) reported some improvement in their primary symptom (p < 0.001). Two monovarietal, full-spectrum, cannabis formulations containing either cannabidiol (CBD 30 mg/mL; THC <2 mg/mL) or a balanced composition (THC 12 mg/mL; CBD 14 mg/mL) accounted for more than 99% of all prescriptions (59.5 and 39.8%, respectively).

The degree of improvement was similar between both formulations, although males reported less effectiveness in the first 4 weeks of treatment. Sex-specific differences were also found in prescription patterns, with male patients increasing the intake of the balanced chemotype overtime. For many patients (71.7%) there were no adverse side effects associated to the treatment and those most reported were mild, such as somnolence (13.0%), dizziness (8.1%) and dry mouth (4.2%), which also appeared to fade over time.

Our results constitute the first real-world evidence on the clinical use of medicinal cannabis in Colombia and suggest that cannabis-based oral magistral formulations represent a safe and efficacious adjuvant therapeutic option in the management of chronic pain.”

https://pubmed.ncbi.nlm.nih.gov/35399153/

“Cannabis sativa L. is one of the oldest plants cultivated by humanity and its medicinal and ethnobotanical properties have been exploited for centuries by many different ancient cultures. Medicinal cannabis in the form of oral magistral formulations may represent a valuable option for physicians as an adjuvant therapeutic intervention in the management of chronic pain and associated comorbidities. “

https://www.frontiersin.org/articles/10.3389/fpain.2022.854795/full


Cannabis-Based Products for Chronic Pain : A Systematic Review

Annals of Internal Medicine

“Background: Contemporary data are needed about the utility of cannabinoids in chronic pain.

Purpose: To evaluate the benefits and harms of cannabinoids for chronic pain.

Data sources: Ovid MEDLINE, PsycINFO, EMBASE, the Cochrane Library, and Scopus to January 2022.

Study selection: English-language, randomized, placebo-controlled trials and cohort studies (≥1 month duration) of cannabinoids for chronic pain.

Data extraction: Data abstraction, risk of bias, and strength of evidence assessments were dually reviewed. Cannabinoids were categorized by THC-to-CBD ratio (high, comparable, or low) and source (synthetic, extract or purified, or whole plant).

Data synthesis: Eighteen randomized, placebo-controlled trials (n = 1740) and 7 cohort studies (n = 13 095) assessed cannabinoids. Studies were primarily short term (1 to 6 months); 56% enrolled patients with neuropathic pain, with 3% to 89% female patients. Synthetic products with high THC-to-CBD ratios (>98% THC) may be associated with moderate improvement in pain severity and response (≥30% improvement) and an increased risk for sedation and are probably associated with a large increased risk for dizziness. Extracted products with high THC-to-CBD ratios (range, 3:1 to 47:1) may be associated with large increased risk for study withdrawal due to adverse events and dizziness. Sublingual spray with comparable THC-to-CBD ratio (1.1:1) probably is associated with small improvement in pain severity and overall function and may be associated with large increased risk for dizziness and sedation and moderate increased risk for nausea. Evidence for other products and outcomes, including longer-term harms, were not reported or were insufficient.

Limitation: Variation in interventions; lack of study details, including unclear availability in the United States; and inadequate evidence for some products.

Conclusion: Oral, synthetic cannabis products with high THC-to-CBD ratios and sublingual, extracted cannabis products with comparable THC-to-CBD ratios may be associated with short-term improvements in chronic pain and increased risk for dizziness and sedation. Studies are needed on long-term outcomes and further evaluation of product formulation effects.”

https://pubmed.ncbi.nlm.nih.gov/35667066/

https://www.acpjournals.org/doi/10.7326/M21-4520


Medical Cannabis Activity Against Inflammation: Active Compounds and Modes of Action

Frontiers in Pharmacology welcomes new Field Chief Editor – Science &  research news | Frontiers

“Inflammation often develops from acute, chronic, or auto-inflammatory disorders that can lead to compromised organ function. Cannabis (Cannabis sativa) has been used to treat inflammation for millennia, but its use in modern medicine is hampered by a lack of scientific knowledge. Previous studies report that cannabis extracts and inflorescence inhibit inflammatory responses in vitro and in pre-clinical and clinical trials. The endocannabinoid system (ECS) is a modulator of immune system activity, and dysregulation of this system is involved in various chronic inflammations. This system includes cannabinoid receptor types 1 and 2 (CB1 and CB2), arachidonic acid-derived endocannabinoids, and enzymes involved in endocannabinoid metabolism. Cannabis produces a large number of phytocannabinoids and numerous other biomolecules such as terpenes and flavonoids. In multiple experimental models, both in vitro and in vivo, several phytocannabinoids, including Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabigerol (CBG), exhibit activity against inflammation. These phytocannabinoids may bind to ECS and/or other receptors and ameliorate various inflammatory-related diseases by activating several signaling pathways. Synergy between phytocannabinoids, as well as between phytocannabinoids and terpenes, has been demonstrated. Cannabis activity can be improved by selecting the most active plant ingredients (API) while eliminating parts of the whole extract. Moreover, in the future cannabis components might be combined with pharmaceutical drugs to reduce inflammation.”

https://pubmed.ncbi.nlm.nih.gov/35614947/

“Cannabis compounds, in some cases via the endocannabinoids system, were shown to affect some of the cornerstones of chronic inflammation. However, in light of the large number of active molecules produced by cannabis and their sometimes-synergistic interactions, there is a need to better specify cannabis-based treatments and the active compounds, while utilizing the synergy identified between cannabis phytomolecules. Thus, even if CBD or THC are considered potentially leading molecules, additional cannabis-derived compounds may be selected for improved activity.

Future approaches for improved usage of cannabis demand the development, transformation and formulation of full-spectrum cannabis extracts into active plant ingredients (APIs) to achieve higher effectivity.

Importantly, once the mode of action of phytocannabinoids and that of their combination is known, APIs might be targeted towards specific mechanisms involved with inflammation.

Moreover, it might be that cannabis components can be combined with other pharmaceutical drugs to reduce inflammation. “

https://www.frontiersin.org/articles/10.3389/fphar.2022.908198/full


The Role of Cannabidiol (CBD) in a Cisplatin-Induced Model of Chronic Neuropathic Pain

“Cannabinoid-based therapies offer a safer, non-opioid alternative for the management of chronic pain. While most studies focus on the analgesic potential of the main psychoactive component of marijuana, Δ9-tetrahydrocannabinol, fewer studies have investigated the role of the non-psychoactive component, cannabidiol (CBD). CBD has been purported to have analgesic, anti-inflammatory, anticonvulsant, and anxiolytic effects. In addition to having actions at both cannabinoid receptors (CB1 and CB2 ), CBD has been shown to interact with both the transient receptor potential vanilloid-1 (TRPV1) and serotonergic (5-HT) receptors. Clinically, CBD’s lack of psychoactivity and decreased abuse liability make it an appealing pharmacotherapeutic for the management of chronic pain. Therefore, the purpose of the current study was to determine whether CBD sex- or dose-dependently reverses antinociception in an acute model of thermal pain and/or mechanical allodynia in a model of cisplatin-induced chronic neuropathic pain. Furthermore, we observed the degree to which CB1 , CB2 , 5-HT, and TRPV1 receptors may be mediating these anti-allodynic responses. Male and female wild-type mice were assessed for either the anti-allodynic effects of 0, 1, 3, 10, and 30 mg/kg CBD in a cisplatin-induced model of neuropathic pain or the antinociceptive effects of 0, 1, 3, 10, 30, and 100 mg/kg CBD in a model of acute thermal (tail-flick) pain 60 minutes following CBD administration. To determine the relative contributions of each receptor subtype in mediating the anti-allodynic effects of CBD, male and female mice were pretreated with either: vehicle, the CB1 inverse agonist SR141716A (10 mg/kg), the CB2 antagonist SR144528 (10 mg/kg), the TRPV1 antagonist capsazepine (10 mg/kg), or the 5-HT2 antagonist methysergide (4 mg/kg) 30 minutes prior to treatment with CBD. Mice were assessed for the effects of the pretreatment alone and in combination with CBD. CBD at a dose of 3 mg/kg was able to partially reverse cisplatin-induced allodynia in male and female mice, while doses of 10 and 30 mg/kg resulted in nearly complete reversal. Our preliminary findings showed that the anti-allodynic effects of 30 mg/kg CBD were completely blocked following pretreatment with SR141716A and SR144528, and partially blocked by capsazepine in both male and female mice. Interestingly, pretreatment with methysergide partially attenuated the anti-allodynic effects of CBD in females alone. In contrast, CBD (0-100 mg/kg) failed to induce antinociception on the tail-flick assay. CBD did induce mild hypothermia with males showing a greater degree of CBD-mediated hypothermia than female mice. Taken together, these findings suggest that CBD may be a more effective treatment option for the management of chronic pain. This study highlights the therapeutic potential of CBD in a model of neuropathic pain and suggests that these effects may have clinical implications for the use of cannabinoids in chronic pain management.”

https://pubmed.ncbi.nlm.nih.gov/35560789/

https://faseb.onlinelibrary.wiley.com/doi/10.1096/fasebj.2022.36.S1.R5197

The Effects of ß-caryophyllene on Pain-Evoked and Pain-Depressed Behaviors in Rats with Chronic Inflammatory Pain

“The antinociceptive effects of major cannabinoids such as ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have been extensively studied in rats. These studies have led to formulations of THC and CBD for human use; however, humans use different strains of Cannabis that contain several hundred different compounds. The contribution of these compounds to pain relief produced by Cannabis is unclear. ß-caryophyllene (BCP) is one compound found in the essential oils of Cannabis. Despite some early studies, the extent to which these compounds produce pain relief in assays of pain-evoked behaviors (i.e., von Frey and Hargreaves tests) and pain-depressed behaviors (i.e., home cage wheel running) is unclear. We hypothesized that BCP would inhibit mechanical allodynia and thermal hyperalgesia as well as restore depressed wheel running activity in male Sprague-Dawley rats with inflammatory pain. Three different doses of BCP (10, 30, and 100 mg/kg) or vehicle were administered to rats via an intraperitoneal injection after hindpaw inflammation induced by an intraplantar injection of Complete Freund’s Adjuvant (CFA). Neither the low dose (10 mg/kg) nor the medium dose (30 mg/kg) of BCP reversed mechanical allodynia of the inflamed hindpaw after intraperitoneal injection. However, a high dose of BCP (100 mg/kg) reversed mechanical allodynia on the von Frey test; however, this dose did not reverse thermal hyperalgesia. A hindpaw injection of 0.1 mL CFA decreased wheel running activity as is consistent with a painful stimulus. However, neither 30 mg/kg BCP nor 100 mg/kg BCP restored pain-depressed wheel running in injured rats. These same doses of BCP did not affect wheel running in uninjured control rats. Therefore, a high dose BCP produces pain relief, although it only does so against mechanical allodynia. BCP does not restore normal activity. This suggests that although pain may be eliminated following BCP administration, a return to normal levels of activity may not be possible which raises questions about the utility of BCP to treat pain. Future studies of the pain-relieving effects of Cannabis constituents must include tests of many pain-related behaviors to understand dose-response relationships and their therapeutic potential.”

https://pubmed.ncbi.nlm.nih.gov/35556755/

https://faseb.onlinelibrary.wiley.com/doi/10.1096/fasebj.2022.36.S1.R3008