Interactions between cannabinoid receptor agonists and mu opioid receptor agonists in rhesus monkeys discriminating fentanyl.

“Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ9-THC) enhance some (antinociceptive) but not other (positive reinforcing) effects of mu opioid receptor agonists, suggesting that cannabinoids might be combined with opioids to treat pain without increasing, and possibly decreasing, abuse.

These data indicate that the discriminative stimulus effects of nalbuphine are more sensitive to attenuation by cannabinoids than those of fentanyl. That the discriminative stimulus effects of some opioids are more susceptible to modification by drugs from other classes has implications for developing maximally effective therapeutic drug mixtures with reduced abuse liability.”

http://www.ncbi.nlm.nih.gov/pubmed/27184925

Cannabis in Pain Treatment: Clinical and Research Considerations

“Cannabinoids show promise as therapeutic agents, particularly as analgesics, but their development and clinical use has been complicated by recognition of their botanical source, cannabis, as a substance of misuse.

Although research into endogenous cannabinoid systems and potential cannabinoid pharmaceuticals is slowly increasing, there has been intense societal interest in making herbal (plant) cannabis available for medicinal use; 23 U.S. States and all Canadian provinces currently permit use in some clinical contexts.

Whether or not individual professionals support the clinical use of herbal cannabis, all clinicians will encounter patients who elect to use it and therefore need to be prepared to advise them on cannabis-related clinical issues despite limited evidence to guide care.

Expanded research on cannabis is needed to better determine the individual and public health effects of increasing use of herbal cannabis and to advance understanding of the pharmaceutical potential of cannabinoids as medications.

This article reviews clinical, research, and policy issues related to herbal cannabis to support clinicians in thoughtfully advising and caring for patients who use cannabis, and it examines obstacles and opportunities to expand research on the health effects of herbal cannabis and cannabinoids.

Perspective

Herbal cannabis is increasingly available for clinical use in the United States despite continuing controversies over its efficacy and safety. This article explores important considerations in the use of plant Cannabis to better prepare clinicians to care for patients who use it, and identifies needed directions for research.”

http://www.jpain.org/article/S1526-5900%2816%2900543-5/fulltext

“APS Issues New Guidance on Medical Marijuana for Pain”  http://www.medscape.com/viewarticle/863396

Pain, Cannabis Species, and Cannabis Use Disorders.

“The purpose of this study was to examine whether individuals who used medical cannabis for chronic pain were at increased risk for cannabis use problems compared with individuals who used medical cannabis for other reasons (e.g., anxiety, insomnia, and muscle spasms).

An additional aim was to determine whether individuals who used cannabis for chronic pain, as well as those who reported greater within-group pain levels, demonstrated a species preference (i.e., sativa, indica, hybrids) and the extent to which species preference was associated with cannabis use problems.

RESULTS:

Individuals who used cannabis to manage chronic pain experienced fewer cannabis use problems than those who did not use it for pain; among those who used it for pain, the average pain level in the past week was not associated with cannabis use problems. Furthermore, individuals who used cannabis for chronic pain were more likely to use indica over sativa. Preference for indica was associated with fewer cannabis use problems than preference for hybrid species.

CONCLUSIONS:

Individuals who use cannabis to manage chronic pain may be at a lower risk for cannabis use problems, relative to individuals who use it for other indications, potentially as a function of their species preference.”

http://www.ncbi.nlm.nih.gov/pubmed/27172585

A Multiple-Dose, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group QT/QTc Study to Evaluate the Electrophysiologic Effects of THC/CBD Spray.

“Delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray has proved efficacious in the treatment of spasticity in multiple sclerosis and chronic pain.

A thorough QT/QTc study was performed to investigate the effects of THC/CBD spray on electrocardiogram (ECG) parameters in compliance with regulatory requirements, evaluating the effect of a recommended daily dose (8 sprays/day) and supratherapeutic doses (24 or 36 sprays/day) of THC/CBD spray on the QT/QTc interval in 258 healthy volunteers.

The safety, tolerability, and pharmacokinetic profile of THC/CBD spray were also evaluated. Therapeutic and supratherapeutic doses of THC/CBD spray had no effect on cardiac repolarization with primary and secondary endpoints of QTcI and QTcF/QTcB, respectively, showing similar results. There was no indication of any effect on heart rate, atrioventricular conduction, or cardiac depolarization and no new clinically relevant morphological changes were observed.

Overall, 19 subjects (25.0%) in the supratherapeutic (24/36 daily sprays of THC/CBD spray) dose group and one (1.6%) in the moxifloxacin group withdrew early due to intolerable AEs. Four psychiatric serious adverse events (AEs) in the highest dose group resulted in a reduction in the surpatherapeutic dose to 24 sprays/day.

In conclusion, THC/CBD spray does not significantly affect ECG parameters. Additionally, THC/CBD spray is well tolerated at therapeutic doses with an AE profile similar to previous clinical studies.”

http://www.ncbi.nlm.nih.gov/pubmed/27121791

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

The role of carbon monoxide on the anti-nociceptive effects and expression of cannabinoid 2 receptors during painful diabetic neuropathy in mice.

“The activation of cannabinoid 2 receptors (CB2R) attenuates chronic pain, but the role played by carbon monoxide synthesized by the inducible heme oxygenase 1 (HO-1) on the anti-nociceptive effects produced by a selective CB2R agonist, JWH-015, during painful diabetic neuropathy remains unknown.

The activation of HO-1 enhanced the anti-nociceptive effects of JWH-015 in diabetic mice, suggesting that coadministration of JWH-015 with CORM-2 or CoPP might be an interesting approach for the treatment of painful diabetic neuropathy in mice.”

http://www.ncbi.nlm.nih.gov/pubmed/27020787

Medical cannabis associated with decreased opiate medication use in retrospective cross-sectional survey of chronic pain patients.

“Opioids are commonly used to treat patients with chronic pain (CP), though there is little evidence that they are effective for long term CP treatment.

Previous studies reported strong associations between passage of medical cannabis laws and decrease in opioid overdose statewide.

Our aim was to examine whether using medical cannabis for CP changed individual patterns of opioid use.

Using an online questionnaire, we conducted a cross-sectional retrospective survey of 244 medical cannabis patients with CP who patronized a medical cannabis dispensary in Michigan between November 2013 and February 2015. Data collected included demographic information, changes in opioid use, quality of life, medication classes used, and medication side effects before and after initiation of cannabis usage.

Among study participants, medical cannabis use was associated with a 64% decrease in opioid use (n=118), decreased number and side effects of medications, and an improved quality of life (45%).

This study suggests that many CP patients are essentially substituting medical cannabis for opioids and other medications for CP treatment, and finding the benefit and side effect profile of cannabis to be greater than these other classes of medications.

This article suggests that using medical cannabis for CP treatment may benefit for some CP patients. The reported improvement in quality of life, better side effect profile, and decreased opioid use should be confirmed by rigorous, longitudinal studies that also assess how CP patients use medical cannabis for pain management.”

http://www.ncbi.nlm.nih.gov/pubmed/27001005

Cannabis in Pain Treatment: Clinical & Research Considerations.

“Cannabinoids show promise as therapeutic agents, particularly as analgesics, but their development and clinical use has been complicated by recognition of their botanical source, cannabis, as a substance of misuse. While research into endogenous cannabinoid systems and potential cannabinoid pharmaceuticals is slowly increasing, there has been intense societal interest in making herbal (plant) cannabis available for medicinal use; 23 U.S. States and all Canadian provinces currently permit use in some clinical contexts. Whether or not individual professionals support the clinical use of herbal cannabis, all clinicians will encounter patients who elect to use it and therefore need to be prepared to advise them on cannabis-related clinical issues despite limited evidence to guide care. Expanded research on cannabis is needed both to better determine the individual and public health effects of increasing use of herbal cannabis and to advance understanding of the pharmaceutical potential of cannabinoids as medications. This paper reviews clinical, research and policy issues related to herbal cannabis in order to support clinicians in thoughtfully advising and caring for patients who use cannabis and it examines obstacles and opportunities to expand research on the health effects of herbal cannabis and cannabinoids.

PERSPECTIVE:

Herbal cannabis is increasingly available for clinical use in the U.S despite continuing controversies over its efficacy and safety. This paper explores important considerations in the use of plant Cannabis to better prepare clinicians to care for patients who use it and to identify needed directions for research.”

http://www.ncbi.nlm.nih.gov/pubmed/26961090

The Effect of Medicinal Cannabis on Pain and Quality of Life Outcomes in Chronic Pain: A Prospective Open-label Study.

“The objective of this prospective, open-label study was to determine the long-term effect of medicinal cannabis treatment on pain and functional outcomes in subjects with treatment-resistant chronic pain.

The treatment of chronic pain with medicinal cannabis in this open-label, prospective cohort resulted in improved pain and functional outcomes, and significant reduction in opioid use.

The results suggest long-term benefit of cannabis treatment in this group of patients…”

http://www.ncbi.nlm.nih.gov/pubmed/26889611

http://www.thctotalhealthcare.com/category/pain-2/

Development and Pharmacological Characterization of Selective Blockers of 2-Arachidonoyl Glycerol Degradation with Efficacy in Rodent Models of Multiple Sclerosis and Pain.

“We report the discovery of compound 4a, a potent β-lactam-based monoacylglycerol lipase (MGL) inhibitor characterized by an irreversible and stereoselective mechanism of action, high membrane permeability, high brain penetration evaluated using a human in vitro blood brain barrier model, high selectivity in binding and affinity-based proteomic profiling assays, and low in vitro toxicity.

Mode-of-action studies demonstrate that 4a, by blocking MGL, increases 2-arachidonoylglycerol, and behaves as cannabinoid (CB1/CB2) receptor indirect agonist.

Administration of 4a in mice suffering from experimental autoimmune encephalitis ameliorates the severity of the clinical symptoms in a CB1/CB2-dependent manner. Moreover, 4a produced analgesic effects in a rodent model of acute inflammatory pain, which was antagonized by CB1 and CB2 receptor antagonists/inverse agonists. 4a also relieves the neuropathic hypersensitivity induced by oxaliplatin.

Given these evidences, 4a, as MGL selective inhibitor, could represent a valuable lead for the future development of therapeutic options for multiple sclerosis and chronic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/26888301