Up-regulation of immunomodulatory effects of mouse bone-marrow derived mesenchymal stem cells by tetrahydrocannabinol pre-treatment involving cannabinoid receptor CB2.

“Chronic pain is commonly and closely correlated with inflammation.

Both cannabinoid signaling and mesenchymal stem cells (MSCs) have been demonstrated to reduce inflammatory pain.

Although cannabinoid signaling is essential for mesenchymal stem cell survival and differentiation, little is known about its role in modulatory effect of MSCs on inflammation and pain sensitivity. Here we showed that mouse bone-marrow derived MSCs (BM-MSCs) expressed both cannabinoid receptor type 1 and 2 (CB1 and CB2). CB2 expression level in BM-MSCs increased with their maturation.

In addition, we found that tetrahydrocannabinol (THC) activated CB2 receptor and ERK signaling, consequently enhancing the modulation of MSCs on inflammation-associated cytokine release from lipopolysaccharides-stimulated microglia.

Consistent with in vitro data, THC pretreatment enhanced the immunomodulatory effects of BM-MSC on thermal hyperalgesia and mechanical allodynia in chronic constriction injury model, by decreasing the release of pro-inflammation cytokines.

Our study revealed the crucial role of THC in promoting the immunomodulatory effects of MSCs and proposed a new strategy to alleviate pain based on stem cells therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/26824325

Cannabinoids in the management of chronic pain: a front line clinical perspective.

“Chronic pain is an escalating public health problem. Currently available treatments are inadequate to control chronic pain conditions, and there is a critical need for novel treatments.

Over a half century of elegant preclinical research has identified the presence of a sophisticated endocannabinoid system that is part of our natural pain and immune defense network.

Convergent work has supported the significant potential to exploit this system to decrease pain and inflammation.

Although the clinical research remains in its infancy, recent systematic reviews have found that 25 of 30 randomized controlled trials have demonstrated a significant analgesic effect.

The authors concluded that cannabinoids currently available for clinical use demonstrate a modest analgesic effect and are safe for the management of chronic pain.

There is a critical need for more translational research so that the excellent work of Dr. Itai Bab and our basic science colleagues around the world can move forward in providing novel cannabinoid-based medicines.

This should include more potent analgesics that are limited in side effects with several routes of delivery. Our patients deserve additional agents for pain control with a novel mechanism of action, and cannabinoids are the new frontier.”

http://www.ncbi.nlm.nih.gov/pubmed/26581068

Medical Cannabis Effective for Chronic Pain, Other Indications

According to this study:

* Moderate-quality evidence supports the use of cannabinoids for the treatment of chronic pain and for the spasticity related to multiple sclerosis.

* Low-quality evidence suggests that cannabinoids may be effective for chemotherapy-induced nausea and vomiting and other indications.”

http://journals.lww.com/ajnonline/Abstract/2015/10000/Medical_Cannabis_Effective_for_Chronic_Pain,_Other.31.aspx

https://www.researchgate.net/publication/282153137_Medical_Cannabis_Effective_for_Chronic_Pain_Other_Indications

“Medical Cannabis Effective for Chronic Pain, Other Indications. According to this study.” http://www.ncbi.nlm.nih.gov/pubmed/26402288

“Cannabinoids for Medical Use: A Systematic Review and Meta-analysis”  http://jama.jamanetwork.com/article.aspx?articleid=2338251

Medical Marijuana and Chronic Pain: a Review of Basic Science and Clinical Evidence.

“Cannabinoid compounds include phytocannabinoids, endocannabinoids, and synthetics.

The two primary phytocannabinoids are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), with CB1 receptors in the brain and peripheral tissue and CB2 receptors in the immune and hematopoietic systems.

The route of delivery of cannabis is important as the bioavailability and metabolism are very different for smoking versus oral/sublingual routes.

Gold standard clinical trials are limited; however, some studies have thus far shown evidence to support the use of cannabinoids for some cancer, neuropathic, spasticity, acute pain, and chronic pain conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/26325482

[Clinical pharmacology of medical cannabinoids in chronic pain].

“In Switzerland, medical cannabinoids can be prescribed under compassionate use after special authorization in justified indications such as refractory pain. Evidence of efficacy in pain is limited and the clinical benefit seems to be modest. Their drug-drug interactions (DDI) profile is poorly documented. Cytochromes P450 (CYP) 2C9 and 3A4 are involved in the metabolism of tetrahydrocannabinol and cannabidiol, which implies possible DDI with CYP450 inhibitor and inducer, such as anticonvulsivants and HIV protease inhibitors, which may be prescribed in patients with neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/26267945

Modulatory effects by CB1 receptors on rat spinal locomotor networks after sustained application of agonists or antagonists.

“Sustained administration of cannabinoid agonists acting on neuronal CB1 receptors (CB1Rs) are proposed for treating spasticity and chronic pain…

Our data suggest that CB1Rs may control the circuit gateway regulating the inflow of sensory afferent inputs into the locomotor circuits, indicating a potential site of action for restricting peripheral signals disruptive for locomotor activity.”

Medical Marijuana for Treatment of Chronic Pain and Other Medical and Psychiatric Problems: A Clinical Review.

“Use of marijuana for chronic pain, neuropathic pain, and spasticity due to multiple sclerosis is supported by high-quality evidence.

Several of these trials had positive results, suggesting that marijuana or cannabinoids may be efficacious for these indications.

CONCLUSIONS AND RELEVANCE:

Medical marijuana is used to treat a host of indications, a few of which have evidence to support treatment with marijuana and many that do not. Physicians should educate patients about medical marijuana to ensure that it is used appropriately and that patients will benefit from its use.”

http://www.ncbi.nlm.nih.gov/pubmed/26103031

Cannabinoids for Medical Use: A Systematic Review and Meta-analysis.

“Cannabis and cannabinoid drugs are widely used to treat disease or alleviate symptoms, but their efficacy for specific indications is not clear.

To conduct a systematic review of the benefits and adverse events (AEs) of cannabinoids.

There was moderate-quality evidence to support the use of cannabinoids for the treatment of chronic pain and spasticity. There was low-quality evidence suggesting that cannabinoids were associated with improvements in nausea and vomiting due to chemotherapy, weight gain in HIV infection, sleep disorders, and Tourette syndrome.

Cannabinoids were associated with an increased risk of short-term AEs. Common AEs included dizziness, dry mouth, nausea, fatigue, somnolence, euphoria, vomiting, disorientation, drowsiness, confusion, loss of balance, and hallucination.”

http://www.ncbi.nlm.nih.gov/pubmed/26103030

http://jama.jamanetwork.com/article.aspx?articleid=2338251

Emerging targets in treating pain.

“Chronic pain poses an enormous socioeconomic burden for the more than 30% of people who suffer from it, costing over $600 billion per year in the USA. In recent years, there has been a surge in preclinical and clinical research endeavors to try to stem this epidemic. Preclinical studies have identified a wide array of potential targets, with some of the most promising translational research being performed on novel opioid receptors, cannabinoid receptors, selective ion channel blockers, cytokine inhibitors, nerve growth factor inhibitors, N-methyl-D-aspartate receptor antagonists, glial cell inhibitors, and bisphosphonates.

SUMMARY:

There are many obstacles for the development of effective medications to treat chronic pain, including the inherent challenges in identifying pathophysiological mechanisms, the overlap and multiplicity of pain pathways, and off-target adverse effects stemming from the ubiquity of drug target receptor sites and the lack of highly selective receptor ligands. Despite these barriers, the number and diversity of potential therapies have continued to grow, to include disease-modifying and individualized drug treatments.”

http://www.ncbi.nlm.nih.gov/pubmed/26087270

http://www.thctotalhealthcare.com/category/pain-2/