Non-Intoxicating Cannabinoids in Visceral Pain

pubmed logo

“Cannabis and cannabis products are becoming increasingly popular options for symptom management of inflammatory bowel diseases, particularly abdominal pain. While anecdotal and patient reports suggest efficacy of these compounds for these conditions, clinical research has shown mixed results. To date, clinical research has focused primarily on delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is a ligand of classical cannabinoid receptors (CBRs). CBD is one of a large group of nonintoxicating cannabinoids (niCBs) that mediate their effects on both CBRs and through non-CBR mechanisms of action. Because they are not psychotropic, there is increasing interest and availability of niCBs. The numerous niCBs show potential to rectify abnormal intestinal motility as well as have anti-inflammatory and analgesic effects. The effects of niCBs are frequently not mediated by CBRs, but rather through actions on other targets, including transient receptor potential channels and voltage-gated ion channels. Additionally, evidence suggests that niCBs can be combined to increase their potency through what is termed the entourage effect. This review examines the pre-clinical data available surrounding these niCBs in treatment of abdominal pain with a focus on non-CBR mechanisms”

https://pubmed.ncbi.nlm.nih.gov/37883662/

https://www.liebertpub.com/doi/10.1089/can.2023.0113.

Cannabidiol as an Alternative Analgesic for Acute Dental Pain

pubmed logo

“Odontogenic pain can be debilitating, and nonopioid analgesic options are limited. This randomized placebo-controlled clinical trial aimed to assess the effectiveness and safety of cannabidiol (CBD) as an analgesic for patients with emergency acute dental pain. Sixty-one patients with moderate to severe toothache were randomized into 3 groups: CBD10 (CBD 10 mg/kg), CBD20 (CBD 20 mg/kg), and placebo. We administered a single dose of respective oral solution and monitored the subjects for 3 h. The primary outcome measure was the numerical pain differences using a visual analog scale (VAS) from baseline within and among the groups. Secondary outcome measures included ordinal pain intensity differences, the onset of significant pain relief, maximum pain relief, changes in bite force within and among the groups, psychoactive effects, mood changes, and other adverse events. Both CBD groups resulted in significant VAS pain reduction compared to their baseline and the placebo group, with a maximum median VAS pain reduction of 73% from baseline pain at the 180-min time point (P < 0.05). CBD20 experienced a faster onset of significant pain relief than CBD10 (15 versus 30 min after drug administration), and both groups reached maximum pain relief at 180-min. Number needed to treat was 3.1 for CBD10 and 2.4 for CBD20. Intragroup comparisons showed a significant increase in bite forces in both CBD groups (P < 0.05) but not in the placebo group (P > 0.05). CBD20 resulted in a significant difference in mean percent bite force change in the 90- and 180-min time points compared to the placebo group (P < 0.05). Compared to placebo, sedation, diarrhea, and abdominal pain were significantly associated with the CBD groups (P < 0.05). There were no other significant psychoactive or mood change effects. This randomized trial provides the first clinical evidence that oral CBD can be an effective and safe analgesic for dental pain.”

https://pubmed.ncbi.nlm.nih.gov/37910667/

“This study showed for the first time that pure CBD could provide more than 70% analgesia to patients with emergency dental pain and increase their bite force during the analgesic effect while maintaining a safe drug profile with minimal side effects. This novel study can catalyze the use of CBD as an alternative analgesic to opioids for acute inflammatory pain conditions, which could ultimately help to address the opioid epidemic.”

https://journals.sagepub.com/doi/10.1177/00220345231200814

Complex Regional Pain Syndrome Type I: Evidence for the CB1 and CB2 Receptors Immunocontent and Beneficial Effect of Local Administration of Cannabidiol in Mice

pubmed logo

“Introduction: Complex regional pain syndrome type I (CRPS-I) is a debilitating neuropathic painful condition associated with allodynia, hyperalgesia, sudomotor and/or vasomotor dysfunctions, turning investigation of its pathophysiology and new therapeutic strategies into an essential topic. We aim to investigate the impact of ischemia/reperfusion injury on the immunocontent of CB1 and CB2 cannabinoid receptor isoforms in the paws of mice submitted to a chronic postischemia pain (CPIP) model and the effects of local administration of cannabidiol (CBD) on mechanical hyperalgesia. 

Methods: Female Swiss mice, 30-35 g, were submitted to the CPIP model on the right hind paw. Skin and muscle samples were removed at different periods for western blot analysis. 

Results: No changes in the immunocontent of CB1 and CB2 receptors in paw muscle tissues after ischemia-reperfusion were observed. CBD promoted an antihyperalgesic effect in both phases. AM281 reversed the effect of CBD, whereas ruthenium red abolished the late phase. 

Conclusion: Our results point to the possible beneficial effects of local administration of CBD in modulating CRPS-I in humans. As possible targets for CBD antihyperalgesia in this model, the contribution of cannabinoid receptor CB1, in addition to TRPM8 is suggested.”

https://pubmed.ncbi.nlm.nih.gov/37903029/

https://www.liebertpub.com/doi/10.1089/can.2023.0093

Chronic Cannabigerol as an Effective Therapeutic for Cisplatin-Induced Neuropathic Pain

pubmed logo

“Cannabigerol (CBG), derived from the cannabis plant, acts as an acute analgesic in a model of cisplatin-induced peripheral neuropathy (CIPN) in mice. There are no curative, long-lasting treatments for CIPN available to humans. We investigated the ability of chronic CBG to alleviate mechanical hypersensitivity due to CIPN in mice by measuring responses to 7 and 14 days of daily CBG. We found that CBG treatment (i.p.) for 7 and 14 consecutive days significantly reduced mechanical hypersensitivity in male and female mice with CIPN and reduced pain sensitivity up to 60-70% of baseline levels (p < 0.001 for all), 24 h after the last injection. Additionally, we found that daily treatment with CBG did not evoke tolerance and did not incur significant weight change or adverse events. The efficacy of CBG was independent of the estrous cycle phase. Therefore, chronic CBG administration can provide at least 24 h of antinociceptive effect in mice. These findings support the study of CBG as a long-lasting neuropathic pain therapy, which acts without tolerance in both males and females.”

https://pubmed.ncbi.nlm.nih.gov/37895913/

https://www.mdpi.com/1424-8247/16/10/1442

Medical Cannabis Alleviates Chronic Neuropathic Pain Effectively and Sustainably without Severe Adverse Effect: A Retrospective Study on 99 Cases

pubmed logo

“Introduction: Medical cannabis may provide a treatment option for chronic neuropathic pain. However, empirical disease-specific data are scarce.

Methods: This is a retrospective observational study including 99 patients with chronic neuropathic pain. These patients received medical cannabis by means of inhaling dried flowers with tetrahydrocannabinol content of <12-22% at a maximal daily dose of 0.15-1 g. Up to six follow-ups were carried out at intervals of 4-6 weeks. Pain severity, sleep disturbance, general improvement, side effects, and therapy tolerance at the follow-up consultations were assessed in interviews and compared with the baseline data using non-parametric Wilcoxon signed-rank test.

Results: Within 6 weeks on the therapy, median of the pain scores decreased significantly from 7.5 to 4.0 (p < 0.001). The proportion of patients with severe pain (score >6) decreased from 96% to 16% (p < 0.001). Sleep disturbance was significantly improved with the median of the scores decreased from 8.0 to 2.0 (p < 0.001). These improvements were sustained over a period of up to 6 months. There were no severe adverse events reported. Mild side effects reported were dryness in mucous tissue (5.4%), fatigue (4.8%), and increased appetite (2.7%). Therapy tolerance was reported in 91% of the interviews.

Conclusion: Medical cannabis is safe and highly effective for treating neuropathic pain and concomitant sleep disturbance.”

https://pubmed.ncbi.nlm.nih.gov/37900896/

https://karger.com/mca/article/6/1/89/860557/Medical-Cannabis-Alleviates-Chronic-Neuropathic

Applications of Cannabinoids in Neuropathic Pain: An Updated Review

pubmed logo

“Neuropathic pain is experienced due to injury to the nerves, underlying disease conditions or toxicity induced by chemotherapeutics. Multiple factors can contribute to neuropathic pain such as central nervous system (CNS)-related autoimmune and metabolic disorders, nerve injury, multiple sclerosis and diabetes. Hence, development of pharmacological interventions to reduce the drawbacks of existing chemotherapeutics and counter neuropathic pain is an urgent unmet clinical need.

Cannabinoid treatment has been reported to be beneficial for several disease conditions including neuropathic pain.

Cannabinoids act by inhibiting the release of neurotransmitters from presynaptic nerve endings, modulating the excitation of postsynaptic neurons, activating descending inhibitory pain pathways, reducing neural inflammation and oxidative stress and also correcting autophagy defects. This review provides insights on the various preclinical and clinical therapeutic applications of cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN) in various diseases and the ongoing clinical trials for the treatment of chronic and acute pain with cannabinoids.

Pharmacological and genetic experimental strategies have well demonstrated the potential neuroprotective effects of cannabinoids and also elaborated their mechanism of action for the therapy of neuropathic pain.”

https://pubmed.ncbi.nlm.nih.gov/37824417/

https://www.dl.begellhouse.com/journals/3667c4ae6e8fd136,7ec6441519bff684,786cb61f3f1ec955.html

Delta-9-tetrahydrocannabinol modulates pain sensitivity among persons receiving opioid agonist therapy for opioid use disorder: A within-subject, randomized, placebo-controlled laboratory study

pubmed logo

“The opioid and cannabinoid receptor systems are inextricably linked-overlapping at the anatomical, functional and behavioural levels. Preclinical studies have reported that cannabinoid and opioid agonists produce synergistic antinociceptive effects. Still, there are no experimental data on the effects of cannabinoid agonists among humans who receive opioid agonist therapies for opioid use disorder (OUD). We conducted an experimental study to investigate the acute effects of the delta-9-tetrahydrocannabinol (THC) among persons receiving methadone therapy for OUD. Using a within-subject, crossover, human laboratory design, 25 persons on methadone therapy for OUD (24% women) were randomly assigned to receive single oral doses of THC (10 or 20 mg, administered as dronabinol) or placebo, during three separate 5-h test sessions. Measures of experimental and self-reported pain sensitivity, abuse potential, cognitive performance and physiological effects were collected. Mixed-effects models examined the main effects of THC dose and interactions between THC (10 and 20 mg) and methadone doses (low-dose methadone defined as <90 mg/day; high dose defined as >90 mg/day). Results demonstrated that, for self-reported rather than experimental pain sensitivity measures, 10 mg THC provided greater relief than 20 mg THC, with no substantial evidence of abuse potential, and inconsistent dose-dependent cognitive adverse effects. There was no indication of any interaction between THC and methadone doses. Collectively, these results provide valuable insights for future studies aiming to evaluate the risk-benefit profile of cannabinoids to relieve pain among individuals receiving opioid agonist therapy for OUD, a timely endeavour amidst the opioid crisis.”

https://pubmed.ncbi.nlm.nih.gov/37644897/

https://onlinelibrary.wiley.com/doi/10.1111/adb.13317

An answered call for aid? Cannabinoid clinical framework for the opioid epidemic

pubmed logo

“Background: The opioid crisis continues in full force, as physicians and caregivers are desperate for resources to help patients with opioid use and chronic pain disorders find safer and more accessible non-opioid tools.

Main body: The purpose of this article is to review the current state of the opioid epidemic; the shifting picture of cannabinoids; and the research, policy, and current events that make opioid risk reduction an urgent public health challenge. The provided table contains an evidence-based clinical framework for the utilization of cannabinoids to treat patients with chronic pain who are dependent on opioids, seeking alternatives to opioids, and tapering opioids.

Conclusion: Based on a comprehensive review of the literature and epidemiological evidence to date, cannabinoids stand to be one of the most interesting, safe, and accessible tools available to attenuate the devastation resulting from the misuse and abuse of opioid narcotics. Considering the urgency of the opioid epidemic and broadening of cannabinoid accessibility amidst absent prescribing guidelines, the authors recommend use of this clinical framework in the contexts of both clinical research continuity and patient care.”

https://pubmed.ncbi.nlm.nih.gov/37587466/

“Resistance to cannabis-based medicines for the opioid epidemic may have many origins, particularly the stigma associated with recreational cannabis use. That said, the evidence to date suggests that it is time for a sea change in the clinical approach to cannabis for pain management and OUD. Throughout the history of science and clinical medicine, there have been transformative changes that were initially considered heretical: hand hygiene as a means to prevent infection prior to germ theory, therapy for H. pylori to combat peptic ulcer disease, and even the genetic basis of cancer were all dismissed by their era’s established medical communities. Similarly, we face great resistance to the implementation of CBD and other cannabinoids for treatment-resistant chronic illnesses, despite the compelling evidence, strong overall safety profile, and urgent need. Many of our patients have already begun their own self-guided journey into pain management with cannabinoids and the burden is now on providers to consolidate the information available, conduct more rigorous research, form best practices, and implement guidelines that will inform both the field and those we care for without stigma.”

https://harmreductionjournal.biomedcentral.com/articles/10.1186/s12954-023-00842-6

Cannabis Versus Opioids for Pain

pubmed logo

“In the human body, pain is an inherent alarm system that activates when there is actual or potential damage, directing an individual’s attention toward the issue. Pain is a frequently cited reason for seeking healthcare or medical assistance. Pain encompasses various elements, including nociception, the perception of pain, suffering, and pain behaviors. Although pain is a fundamental mechanism, it can become burdensome when it persists for an extended period, leading to suffering and pain-related behaviors. Chronic and unrelenting pain can cause psychological, physical, and emotional distress, adding further strain to individuals.

The search for an ideal pain relief medication has been an ongoing endeavor since ancient times, as certain types of pain still lack definitive treatment options. Several strategies have been developed to address intractable pain that does not respond to nonsteroidal anti-inflammatory drugs (NSAIDs), with opioids being the mainstay in many pain management protocols. In recent years, there has been growing and promising evidence suggesting the potential effectiveness of cannabinoids in the management of chronic pain.”

https://pubmed.ncbi.nlm.nih.gov/34424653/

Can cannabidiol have an analgesic effect?

pubmed logo

“Background: Cannabis, more commonly known as marijuana or hemp, has been used for centuries to treat various conditions. Cannabis contains two main components cannabidiol (CBD) and tetrahydrocannabinol (THC). CBD, unlike THC, is devoid of psychoactive effects and is well tolerated by the human body but has no direct effect on the receptors of the endocannabid system, despite the lack of action on the receptors of the endocannabid system.

Objectives and methods: We have prepared a literature review based on the latest available literature regarding the analgesic effects of CBD. CBD has a wide range of effects on the human body. In this study, we will present the potential mechanisms responsible for the analgesic effect of CBD. To the best of our knowledge, this is the first review to explore the analgesic mechanisms of CBD.

Results and conclusion: The analgesic effect of CBD is complex and still being researched. CBD models the perception of pain by acting on G protein-coupled receptors. Another group of receptors that CBD acts on are serotonergic receptors. The effect of CBD on an enzyme of potential importance in the production of inflammatory factors such as cyclooxygenases and lipoxygenases has also been confirmed. The presented potential mechanisms of CBD’s analgesic effect are currently being extensively studied.”

https://pubmed.ncbi.nlm.nih.gov/37584368/

https://onlinelibrary.wiley.com/doi/10.1111/fcp.12947