Beta-caryophyllene is a dietary cannabinoid

“The psychoactive cannabinoids from Cannabis sativa L. and the arachidonic acid-derived endocannabinoids are nonselective natural ligands for cannabinoid receptor type 1 (CB(1)) and CB(2) receptors. Although the CB(1) receptor is responsible for the psychomodulatory effects, activation of the CB(2) receptor is a potential therapeutic strategy for the treatment of inflammation, pain, atherosclerosis, and osteoporosis.

 Here, we report that the widespread plant volatile (E)-beta-caryophyllene [(E)-BCP] selectively binds to the CB(2) receptor and that it is a functional CB(2) agonist.

 Intriguingly, (E)-BCP is a common constituent of the essential oils of numerous spice and food plants and a major component in Cannabis.

 …this natural product exerts cannabimimetic effects in vivo. These results identify (E)-BCP as a functional nonpsychoactive CB(2) receptor ligand in foodstuff and as a macrocyclic antiinflammatory cannabinoid in Cannabis…

 Because (E)-BCP is a major constituent in Cannabis essential oil and shows significant cannabimimetic effects, it may also contribute to the overall effect of Cannabis preparations…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2449371/

Anti-inflammatory cannabinoids in diet: Towards a better understanding of CB(2) receptor action?

“The endocannabinoid system is an ancient lipid signaling network which in mammals modulates neuronal functions, inflammatory processes, and is involved in the aetiology of certain human lifestyle diseases, such as Crohn’s disease, atherosclerosis and osteoarthritis.

The system is able to downregulate stress-related signals that lead to chronic inflammation and certain types of pain, but it is also involved in causing inflammation-associated symptoms, depending on the physiological context.

The cannabinoid type-2 (CB2) receptor, which unlike the CB1 receptor does not induce central side effects, has been shown to be a promising therapeutic target. While CB1 receptor antagonists/inverse agonists are of therapeutic value, also CB2 receptor ligands including agonists are of pharmacological interest.

 Although the endocannabinoid system is known to be involved in the regulation of energy homoeostasis and metabolism (mainly via CB1 receptors) there was hitherto no direct link between food intake and cannabinoid receptor activation. Our recent finding that beta-caryophyllene, a ubiquitous lipohilic plant natural product, selectively binds to the CB2 receptor and acts as a full agonist is unexpected…

In the case of the dietary natural product beta-caryophyllene, a full CB2 receptor-selective agonist in vitro, potent anti-inflammatory cannabimimetic effects are observed. Intriguingly, the lowest oral dose tested (5 mg/Kg) of this widespread and apparently non-toxic compound, which is also an FDA-approve food additive, was the most effective. Maybe this strengthens the hypothesis that beta-caryophyllene is indeed a dietary cannabinoid, thus inferring that by eating this compound the endocannabinoid system may be modulated in a beneficial way…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633791/

The endocannabinoid system in inflammatory bowel diseases: from pathophysiology to therapeutic opportunity.

“Crohn’s disease and ulcerative colitis are two major forms of inflammatory bowel diseases (IBD), which are chronic inflammatory disorders of the gastrointestinal tract. These pathologies are currently under investigation to both unravel their etiology and find novel treatments.

Anandamide and 2-arachidonoylglycerol are endogenous bioactive lipids that bind to and activate the cannabinoid receptors, and together with the enzymes responsible for their biosynthesis and degradation [fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)] constitute the endocannabinoid system (ECS).

The ECS is implicated in gut homeostasis, modulating gastrointestinal motility, visceral sensation, and inflammation, as well as being recently implicated in IBD pathogenesis.

Numerous subsequent studies investigating the effects of cannabinoid agonists and endocannabinoid degradation inhibitors in rodent models of IBD have identified a potential therapeutic role for the ECS.”

http://www.ncbi.nlm.nih.gov/pubmed/22917662

The Cannabinoid 1 Receptor (CNR1) 1359 G/A Polymorphism Modulates Susceptibility to Ulcerative Colitis and the Phenotype in Crohn’s Disease

“Anecdotal reports suggest that marijuana- or tetrahydrocannabinol-containing products may be effective in alleviating symptoms in patients with ulcerative colitis (UC) and Crohn’s disease (CD). This is supported by recent studies of our group and others suggesting that pharmacological activation of the cannabinoid 1 (CB1) receptor with selective receptor agonists decreases the inflammatory response in various murine models of colonic inflammation…

Recent evidence suggests a crucial role of the endocannabinoid system, including the cannabinoid 1 receptor (CNR1), in intestinal inflammation. We therefore investigated the influence of the CNR1 1359 G/A (p.Thr453Thr; rs1049353) single nucleotide polymorphism (SNP) on disease susceptibility and phenotype in patients with ulcerative colitis (UC) and Crohn’s disease (CD)…

Conclusion

The CNR1 p.Thr453Thr polymorphism appears to modulate UC susceptibility and the CD phenotype. The endocannabinoid system may influence the manifestation of inflammatory bowel diseases, suggesting endocannabinoids as potential target for future therapies.

…our findings provide further evidence that endocannabinoids modulate intestinal inflammation, suggesting that this system could act as a target for future therapeutic interventions.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829088/

Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors.

“The endocannabinoid (EC) system mediates protection against intestinal inflammation. In this study, we investigated the effects of blocking EC degradation or cellular reuptake in experimental colitis in mice…

 In conclusion, drugs targeting EC degradation offer therapeutic potential in the treatment of inflammatory bowel diseases. Furthermore, reduction of FAAH mRNA expression is involved in the pathophysiological response to colitis.”

http://www.ncbi.nlm.nih.gov/pubmed/18493729

The role of fatty acid hydrolase gene variants in inflammatory bowel disease.

“Recent studies suggest a role for the endocannabinoid system, including fatty acid amide hydrolase (FAAH), in intestinal inflammation.

AIM:

To analyse FAAH expression and the FAAH 385 C/A (p.Pro129Thr; rs324420) single nucleotide polymorphism (SNP) in-patients with Crohn’s disease (CD) and ulcerative colitis (UC).

CONCLUSION:

The FAAH p.Pro129Thr polymorphism may modulate the CD phenotype.”

http://www.ncbi.nlm.nih.gov/pubmed/19053981

Role of cannabinoid receptors and RAGE in inflammatory bowel disease.

“The endocannabinoid system is involved in many inflammatory diseases, such as Crohn’s disease (CD) and ulcerative colitis (UC). The distribution and expression of cannabinoid receptors 1 (CNR1) and 2 (CNR2) in combination with inflammatory cytokines and RAGE (receptor of advanced glycation end products), which is also overactive in these diseases, in dependency of the extent of inflammation and alteration of the colon barrier is still unclear and needs to be elucidated…

 

CONCLUSION:

We showed that cannabinoid receptors are expressed differentially in inflammatory bowel disease and that the expression seems to be influenced by the underlying disease and by localized inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/21472688

Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease.

“Inflammatory bowel disease (IBD) is an incurable disease which affects millions of people in industrialised countries. Anecdotal and scientific evidence suggest that Cannabis use may have a positive impact in IBD patients.

 Here, we investigated the effect of cannabigerol (CBG), a non-psychotropic Cannabis-derived cannabinoid, in a murine model of colitis…

  In conclusion, CBG attenuated murine colitis, reduced nitric oxide production in macrophages (effect being modulated by the CB(2) receptor) and reduced ROS formation in intestinal epithelial cells.

CBG could be considered for clinical experimentation in IBD patients.”

http://www.ncbi.nlm.nih.gov/pubmed/23415610

From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

Image result for West Indian Med J

“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”

http://www.ncbi.nlm.nih.gov/pubmed/23155985

Cannabinoids in the treatment of chemotherapy-induced nausea and vomiting: beyond prevention of acute emesis.

Abstract

“Chemotherapy-induced nausea and vomiting (CINV) remains a significant problem in the care of cancer patients. Although the use of serotonin (5-HT3) receptor antagonists, as well as neurokinin-1 inhibitors, has reduced rates of acute emesis, many patients still experience acute vomiting; moreover, these agents have reduced efficacy in preventing nausea, delayed CINV, and breakthrough CINV. Nausea, in particular, continues to have a major–and often overlooked–impact on patients’ quality of life. Optimizing the treatment for CINV likely will involve combinations of agents that inhibit the numerous neurotransmitter systems involved in nausea and vomiting reflexes. Cannabinoids are active in many of these systems, and two oral formulations, dronabinol (Marinol) and nabilone (Cesamet), are approved by the US Food and Drug Administration for use in CINV refractory to conventional antiemetic therapy. Agents in this class have shown superiority to dopamine receptor antagonists in preventing CINV, and there is some evidence that the combination of a dopamine antagonist and cannabinoid is superior to either alone and is particularly effective in preventing nausea. The presence of side effects from the cannabinoids may have slowed their adoption into clinical practice, but in a number of comparative clinical trials, patients have expressed a clear preference for the cannabinoid, choosing its efficacy over any undesired effects. Improvement in antiemetic therapy across the entire spectrum of CINV will involve the use of agents with different mechanisms of action in concurrent or sequential combinations, and the best such combinations should be identified. In this effort, the utility of the cannabinoids should not be overlooked.”

http://www.ncbi.nlm.nih.gov/pubmed/17566383